参数资料
型号: LTC1702IGN#TRPBF
厂商: Linear Technology
文件页数: 10/36页
文件大小: 0K
描述: IC REG CTRLR BUCK PWM VM 24-SSOP
标准包装: 2,500
系列: PolyPhase®
PWM 型: 电压模式
输出数: 2
频率 - 最大: 750kHz
占空比: 93%
电源电压: 3 V ~ 7 V
降压:
升压:
回扫:
反相:
倍增器:
除法器:
Cuk:
隔离:
工作温度: -40°C ~ 85°C
封装/外壳: 24-SSOP(0.154",3.90mm 宽)
包装: 带卷 (TR)
LTC1702
APPLICATIO N S I N FOR M ATIO N
amp of continuous current with peak currents up to 5A to
slew large MOSFET gates quickly. The external MOSFETs
are connected with the drain of QT attached to the input
supply and the source of QT at the switching node SW. QB
is the synchronous rectifier with its drain at SW and its
source at PGND. SW is connected to one end of the
inductor, with the other end connected to V OUT . The output
capacitor is connected from V OUT to PGND.
When a switching cycle begins, QB is turned off and QT is
turned on. SW rises almost immediately to V IN and the
inductor current begins to increase. When the PWM pulse
finishes, QT turns off and one nonoverlap interval later, QB
tion with a simple external charge pump (Figure 2), this
allows the LTC1702 to completely enhance the gate of QT
without requiring an additional, higher supply voltage.
The two channels of the LTC1702 run from a common
clock, with the phasing chosen to be 180 ° from side 1 to
side 2. This has the effect of doubling the frequency of the
switching pulses seen by the input bypass capacitor, sig-
nificantly lowering the RMS current seen by the capacitor
and reducing the value required (see the 2-Phase section).
V IN
turns on. Now SW drops to PGND and the inductor current
decreases. The cycle repeats with the next tick of the
PV CC
BOOST
D CP
+
C IN
master clock. The percentage of time spent in each mode
is controlled by the duty cycle of the PWM signal, which in
turn is controlled by the feedback amplifier. The master
TG
SW
C CP
1 μ F
QT
L EXT
V OUT
clock generates a 1V P-P , 550kHz sawtooth waveform and
turns QT once every 1.8 μ s. In a typical application with a
5V input and a 1.6V output, the duty cycle will be set at 1.6/
5 × 100% or 32% by the feedback loop. This will give
roughly a 575ns on-time for QT and a 1.22 μ s on-time for
QB.
LTC1702
BG
QB
PGND
Figure 2. Floating TG Driver Supply
+
C OUT
1702 F02
This constant frequency operation brings with it a couple
of benefits. Inductor and capacitor values can be chosen
with a precise operating frequency in mind and the feed-
back loop components can be similarly tightly specified.
Noise generated by the circuit will always be in a known
frequency band with the 550kHz frequency designed to
leave the 455kHz IF band free of interference. Subharmonic
oscillation and slope compensation, common headaches
with constant frequency current mode switchers, are
absent in voltage mode designs like the LTC1702.
During the time that QT is on, its source (the SW pin) is at
V IN . V IN is also the power supply for the LTC1702. How-
ever, QT requires V IN + V GS(ON) at its gate to achieve
minimum R ON . This presents a problem for the LTC1702—
it needs to generate a gate drive signal at TG higher than
its highest supply voltage. To get around this, the TG driver
runs from floating supplies, with its negative supply at-
tached to SW and its power supply at BOOST. This allows
it to slew up and down with the source of QT. In combina-
Feedback Amplifier
Each side of the LTC1702 senses the output voltage at
V OUT with an internal feedback op amp (see Block Dia-
gram). This is a real op amp with a low impedance output,
85dB open-loop gain and 25MHz gain-bandwidth product.
The positive input is connected internally to an 800mV
reference, while the negative input is connected to the FB
pin. The output is connected to COMP, which is in turn
connected to the soft-start circuitry and from there to the
PWM generator.
Unlike many regulators that use a resistor divider con-
nected to a high impedance feedback input, the LTC1702
is designed to use an inverting summing amplifier topol-
ogy with the FB pin configured as a virtual ground. This
allows flexibility in choosing pole and zero locations not
available with simple g m configurations. In particular, it
allows the use of “type 3” compensation, which provides
a phase boost at the LC pole frequency and significantly
1702fa
10
相关PDF资料
PDF描述
H2AXT-10112-Y4-ND JUMPER-H1502TR/A2015Y/X 12"
LTC1873EG#TRPBF IC REG CTRLR BUCK PWM VM 28-SSOP
H2AXT-10112-W4-ND JUMPER-H1502TR/A2015W/X 12"
LTC1159CG-5 IC REG CTRLR BUCK PWM CM 20-SSOP
LTC1159CG-3.3#PBF IC REG CTRLR BUCK PWM CM 20-SSOP
相关代理商/技术参数
参数描述
LTC1703CG 功能描述:IC REG SW DUAL SYNC VID 28SSOP RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - 专用型 系列:- 标准包装:43 系列:- 应用:控制器,Intel VR11 输入电压:5 V ~ 12 V 输出数:1 输出电压:0.5 V ~ 1.6 V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:48-VFQFN 裸露焊盘 供应商设备封装:48-QFN(7x7) 包装:管件
LTC1703CG#PBF 功能描述:IC REG SW DUAL SYNC VID 28SSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - 专用型 系列:- 标准包装:2,000 系列:- 应用:控制器,DSP 输入电压:4.5 V ~ 25 V 输出数:2 输出电压:最低可调至 1.2V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:30-TFSOP(0.173",4.40mm 宽) 供应商设备封装:30-TSSOP 包装:带卷 (TR)
LTC1703CG#TR 制造商:Linear Technology 功能描述:LDO Cntrlr REG CTRLR 0.9V to 2V 28-Pin SSOP T/R
LTC1703CG#TRPBF 功能描述:IC REG SW DUAL SYNC VID 28SSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - 专用型 系列:- 标准包装:43 系列:- 应用:控制器,Intel VR11 输入电压:5 V ~ 12 V 输出数:1 输出电压:0.5 V ~ 1.6 V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:48-VFQFN 裸露焊盘 供应商设备封装:48-QFN(7x7) 包装:管件
LTC1703IG 功能描述:IC REG SW DL SYNC W/VID 28-SSOP RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - 专用型 系列:- 标准包装:43 系列:- 应用:控制器,Intel VR11 输入电压:5 V ~ 12 V 输出数:1 输出电压:0.5 V ~ 1.6 V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:48-VFQFN 裸露焊盘 供应商设备封装:48-QFN(7x7) 包装:管件