参数资料
型号: LTC1702IGN
厂商: Linear Technology
文件页数: 26/36页
文件大小: 0K
描述: IC REG CTRLR BUCK PWM VM 24-SSOP
标准包装: 55
系列: PolyPhase®
PWM 型: 电压模式
输出数: 2
频率 - 最大: 750kHz
占空比: 93%
电源电压: 3 V ~ 7 V
降压:
升压:
回扫:
反相:
倍增器:
除法器:
Cuk:
隔离:
工作温度: -40°C ~ 85°C
封装/外壳: 24-SSOP(0.154",3.90mm 宽)
包装: 管件
LTC1702
APPLICATIO N S I N FOR M ATIO N
to an intermediate supply voltage, often 5V. The LTC1702
then converts the intermediate voltage to the low voltage,
high current supplies required by the system. Compared
to a 1-step converter that converts a high input voltage
directly to a very low output voltage, the 2-step converter
exhibits superior transient response, smaller component
size and equivalent efficiency. Thermal management and
layout  complexity  are  also  improved  with  a  2-step
approach.
A typical notebook computer supply might use a 4-cell
Li-Ion battery pack as an input supply with a 15V nominal
terminal voltage. The logic circuits require 5V/3A and 3.3V/
5A to power system board logic, and 2.5V/0.5A, 1.8V/2A
and 1.5V/10A to power the CPU. A typical 2-step conver-
sion system would use a step-down switcher (perhaps an
LTC1628 or two LTC1625s) to convert 15V to 5V and
another to convert 15V to 3.3V (Figure 14). One channel of
the LTC1702 would generate the 1.5V supply using the
3.3V supply as the input and the other channel would gen-
erate 1.8V using the 5V supply as the input. The corre-
sponding 1-step system would use four similar step-down
switchers, each using 15V as the input supply and gener-
ating one of the four output voltages. Since the 2.5V sup-
ply represents a small fraction of the total output power,
either system can generate it from the 3.3V output using
an LDO linear regulator, without the 75% linear efficiency
making much of an impact on total system efficiency.
V BAT
15V
5V/3A
Clearly, the 5V and 3.3V sections of the two schemes are
equivalent. The 2-step system draws additional power
from the 5V and 3.3V outputs, but the regulation tech-
niques and trade-offs at these outputs are similar. The
difference lies in the way the 1.8V and 1.5V supplies are
generated. For example, the 2-step system converts 3.3V
to 1.5V with a 45% duty cycle. During the QT on-time, the
voltage across the inductor is 1.8V and during the QB
on-time, the voltage is 1.5V, giving roughly symmetrical
transient response to positive and negative load steps. The
1.8V maximum voltage across the inductor allows the use
of a small 0.47 μ H inductor while keeping ripple current
under 4A (40% of the 10A maximum load). By contrast,
the 1-step converter is converting 15V to 1.5V, requiring
just a 10% duty cycle. Inductor voltages are now 13.5V
when QT is on and 1.5V when QB is on, giving vastly
different di/dt values and correspondingly skewed tran-
sient response with positive and negative current steps.
The narrow 10% duty cycle usually requires a lower
switching frequency, which in turn requires a higher value
inductor and larger output capacitor. Parasitic losses due
to  the  large  voltage  swing  at  the  source  of  QT  cost
efficiency, eliminating any advantage the 1-step conver-
sion might have had.
Note that power dissipation in the LTC1702 portion of a
2-step circuit is lower than it would be in a typical 1-step
converter, even in cases where the 1-step converter has
higher total efficiency than the 2-step system. In a typical
microprocessor core supply regulator, for example, the
regulator is usually located right next to the CPU. In a
1-step design, all of the power dissipated by the core
LTC1628*
*OR TWO LTC1625s
LTC1702
LDO
1.8V/2A
1.5V/10A
3.3V/5A
2.5V/0.5A
1702 F14
regulator is right there next to the hot CPU, aggravating
thermal management. In a 2-step LTC1702 design, a
significant percentage of the power lost in the core regu-
lation system happens in the 5V or 3.3V supply, which is
usually away from the CPU. The power lost to heat in the
LTC1702 section of the system is relatively low, minimiz-
Figure 14. 2-Step Conversion Block Diagram
ing the heat near the CPU.
1702fa
26
相关PDF资料
PDF描述
RSC18DRTS CONN EDGECARD 36POS DIP .100 SLD
H2AAT-10103-R4-ND JUMPER-H1502TR/A2015R/H1502TR 3"
VE-25Z-EU-F1 CONVERTER MOD DC/DC 2V 80W
SLP682M025C1P3 CAP ALUM 6800UF 25V 20% SNAP
H2AAT-10103-N4-ND JUMPER-H1502TR/A2015N/H1502TR 3"
相关代理商/技术参数
参数描述
LTC1702IGN#PBF 功能描述:IC REG CTRLR BUCK PWM VM 24-SSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:PolyPhase® 标准包装:4,500 系列:PowerWise® PWM 型:控制器 输出数:1 频率 - 最大:1MHz 占空比:95% 电源电压:2.8 V ~ 5.5 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:6-WDFN 裸露焊盘 包装:带卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名称:LM1771SSDX
LTC1702IGN#TR 功能描述:IC REG CTRLR BUCK PWM VM 24-SSOP RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:PolyPhase® 标准包装:4,500 系列:PowerWise® PWM 型:控制器 输出数:1 频率 - 最大:1MHz 占空比:95% 电源电压:2.8 V ~ 5.5 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:6-WDFN 裸露焊盘 包装:带卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名称:LM1771SSDX
LTC1702IGN#TRPBF 功能描述:IC REG CTRLR BUCK PWM VM 24-SSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:PolyPhase® 标准包装:4,500 系列:PowerWise® PWM 型:控制器 输出数:1 频率 - 最大:1MHz 占空比:95% 电源电压:2.8 V ~ 5.5 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:6-WDFN 裸露焊盘 包装:带卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名称:LM1771SSDX
LTC1703CG 功能描述:IC REG SW DUAL SYNC VID 28SSOP RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - 专用型 系列:- 标准包装:43 系列:- 应用:控制器,Intel VR11 输入电压:5 V ~ 12 V 输出数:1 输出电压:0.5 V ~ 1.6 V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:48-VFQFN 裸露焊盘 供应商设备封装:48-QFN(7x7) 包装:管件
LTC1703CG#PBF 功能描述:IC REG SW DUAL SYNC VID 28SSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - 专用型 系列:- 标准包装:2,000 系列:- 应用:控制器,DSP 输入电压:4.5 V ~ 25 V 输出数:2 输出电压:最低可调至 1.2V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:30-TFSOP(0.173",4.40mm 宽) 供应商设备封装:30-TSSOP 包装:带卷 (TR)