参数资料
型号: LTC1709EG-8
厂商: Linear Technology
文件页数: 13/28页
文件大小: 0K
描述: IC REG CTRLR BUCK PWM CM 36-SSOP
标准包装: 37
PWM 型: 电流模式
输出数: 1
频率 - 最大: 360kHz
占空比: 99.5%
电源电压: 4 V ~ 36 V
降压:
升压:
回扫:
反相:
倍增器:
除法器:
Cuk:
隔离:
工作温度: -40°C ~ 85°C
封装/外壳: 36-SSOP(0.209",5.30mm 宽)
包装: 管件
LTC1709-8/LTC1709-9
APPLICATIO S I FOR ATIO
Accepting larger values of ? I L allows the use of low
inductances, but can result in higher output voltage ripple.
A reasonable starting point for setting ripple current is ? I L
= 0.4(I OUT )/2, where I OUT is the total load current. Remem-
ber, the maximum ? I L occurs at the maximum input
voltage. The individual inductor ripple currents are deter-
mined by the inductor, input and output voltages.
Inductor Core Selection
Once the values for L1 and L2 are known, the type of
inductor must be selected. High efficiency converters
generally cannot afford the core loss found in low cost
powdered iron cores, forcing the use of more expensive
ferrite, molypermalloy, or Kool M μ ? cores. Actual core
(see EXTV CC Pin Connection). Consequently, logic-level
threshold MOSFETs must be used in most applications.
The only exception is if low input voltage is expected
(V IN < 5V); then, sublogic-level threshold MOSFETs
(V GS(TH) < 1V) should be used. Pay close attention to the
BV DSS specification for the MOSFETs as well; most of the
logic-level MOSFETs are limited to 30V or less.
Selection criteria for the power MOSFETs include the “ON”
resistance R DS(ON) , reverse transfer capacitance C RSS ,
input voltage and maximum output current. When the
LTC1709 is operating in continuous mode the duty factors
for the top and bottom MOSFETs of each output stage are
given by:
loss is independent of core size for a fixed inductor value,
but it is very dependent on inductance selected. As induc-
tance increases, core losses go down. Unfortunately,
Main Switch Duty Cycle =
V OUT
V IN
Synchronous Switch Duty Cycle = ? IN OUT ?
? I
?
( )
P MAIN = OUT ? MAX ? 1 + δ R DS ( ON ) +
( )
(
)( )
k V IN ? MAX ? C RSS f
? I
?
( )
P SYNC = IN OUT ? MAX ? 1 + δ R DS ( ON )
increased inductance requires more turns of wire and
therefore copper losses will increase.
Ferrite designs have very low core loss and are preferred
at high switching frequencies, so design goals can con-
centrate on copper loss and preventing saturation. Ferrite
core material saturates “hard,” which means that induc-
tance collapses abruptly when the peak design current is
exceeded. This results in an abrupt increase in inductor
ripple current and consequent output voltage ripple. Do
not allow the core to saturate!
Molypermalloy (from Magnetics, Inc.) is a very good, low
loss core material for toroids, but it is more expensive
than ferrite. A reasonable compromise from the same
manufacturer is Kool M μ . Toroids are very space effi-
cient, especially when you can use several layers of wire.
Because they lack a bobbin, mounting is more difficult.
However, designs for surface mount are available which
do not increase the height significantly.
Power MOSFET, D1 and D2 Selection
Two external power MOSFETs must be selected for each
controller with the LTC1709: one N-channel MOSFET for
the top (main) switch, and one N-channel MOSFET for the
bottom (synchronous) switch.
The peak-to-peak drive levels are set by the INTV CC
voltage. This voltage is typically 5V during start-up
? V – V ?
? V IN ?
The MOSFET power dissipations at maximum output
current are given by:
2
V
V IN ? 2 ?
2 ? I ?
? 2 ?
2
V – V
V IN ? 2 ?
where δ is the temperature dependency of R DS(ON) and k
is a constant inversely related to the gate drive current.
Both MOSFETs have I 2 R losses but the topside N-channel
equation includes an additional term for transition losses,
which peak at the highest input voltage. For V IN < 20V the
high current efficiency generally improves with larger
MOSFETs, while for V IN > 20V the transition losses rapidly
increase to the point that the use of a higher R DS(ON) device
with lower C RSS actual provides higher efficiency. The
Kool M μ is a registered trademark of Magnetics, Inc.
13
相关PDF资料
PDF描述
LTC1709EG-9#PBF IC REG CTRLR BUCK PWM CM 36-SSOP
LTC1709EG-9 IC REG CTRLR BUCK PWM CM 36-SSOP
LTC1775CS#TRPBF IC REG CTRLR BUCK PWM CM 16-SOIC
LTC1775CS#TR IC REG CTRLR BUCK PWM CM 16-SOIC
H4BBT-10112-G1-ND JUMPER-H9992TR/A3047G/H9992TR12"
相关代理商/技术参数
参数描述
LTC1709EG-8#PBF 功能描述:IC REG CTRLR BUCK PWM CM 36-SSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:2,000 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:1MHz 占空比:50% 电源电压:9 V ~ 10 V 降压:无 升压:是 回扫:是 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 85°C 封装/外壳:8-TSSOP(0.173",4.40mm 宽) 包装:带卷 (TR)
LTC1709EG-8#TR 功能描述:IC REG CTRLR BUCK PWM CM 36-SSOP RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:4,500 系列:PowerWise® PWM 型:控制器 输出数:1 频率 - 最大:1MHz 占空比:95% 电源电压:2.8 V ~ 5.5 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:6-WDFN 裸露焊盘 包装:带卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名称:LM1771SSDX
LTC1709EG-8#TRPBF 功能描述:IC REG CTRLR BUCK PWM CM 36-SSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:4,500 系列:PowerWise® PWM 型:控制器 输出数:1 频率 - 最大:1MHz 占空比:95% 电源电压:2.8 V ~ 5.5 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:6-WDFN 裸露焊盘 包装:带卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名称:LM1771SSDX
LTC1709EG-85 功能描述:IC REG CTRLR BUCK PWM CM 36-SSOP RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:4,500 系列:PowerWise® PWM 型:控制器 输出数:1 频率 - 最大:1MHz 占空比:95% 电源电压:2.8 V ~ 5.5 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:6-WDFN 裸露焊盘 包装:带卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名称:LM1771SSDX
LTC1709EG-85#PBF 功能描述:IC REG CTRLR BUCK PWM CM 36-SSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:4,500 系列:PowerWise® PWM 型:控制器 输出数:1 频率 - 最大:1MHz 占空比:95% 电源电压:2.8 V ~ 5.5 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:6-WDFN 裸露焊盘 包装:带卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名称:LM1771SSDX