参数资料
型号: LTC1744IFW
厂商: Linear Technology
文件页数: 11/24页
文件大小: 0K
描述: IC ADC 14BIT 50MSPS 48-TSSOP
标准包装: 39
位数: 14
采样率(每秒): 50M
数据接口: 并联
转换器数目: 1
功率耗散(最大): 1.5W
电压电源: 单电源
工作温度: -40°C ~ 85°C
安装类型: 表面贴装
封装/外壳: 48-TFSOP(0.240",6.10mm 宽)
供应商设备封装: 48-TSSOP
包装: 管件
输入数目和类型: 2 个单端,双极;1 个差分,双极
19
LTC1744
1744f
Output Driver Power
Separate output power and ground pins allow the output
drivers to be isolated from the analog circuitry. The power
supply for the digital output buffers, OVDD, should be tied
to the same power supply as for the logic being driven. For
example if the converter is driving a DSP powered by a 3V
supply then OVDD should be tied to that same 3V supply.
OVDD can be powered with any voltage up to 5V. The logic
outputs will swing between OGND and OVDD.
Output Enable
The outputs may be disabled with the output enable pin,
OE. OE low disables all data outputs including OF and
CLKOUT. The data access and bus relinquish times are too
slow to allow the outputs to be enabled and disabled
during full speed operation. The output Hi-Z state is
intended for use during long periods of inactivity.
GROUNDING AND BYPASSING
The LTC1744 requires a printed circuit board with a clean
unbroken ground plane. A multilayer board with an inter-
nal ground plane is recommended. The pinout of the
LTC1744 has been optimized for a flowthrough layout so
that the interaction between inputs and digital outputs is
minimized. Layout for the printed circuit board should
ensure that digital and analog signal lines are separated as
much as possible. In particular, care should be taken not
to run any digital track alongside an analog signal track, an
encode signal track or underneath the ADC.
High quality ceramic bypass capacitors should be used at
the VDD, VCM, REFHA, REFHB, REFLA and REFLB pins as
shown in the block diagram on the front page of this data
sheet. Bypass capacitors must be located as close to the
pins as possible. Of particular importance are the capaci-
tors between REFHA and REFLB and between REFHB and
REFLA. These capacitors should be as close to the device
as possible (1.5mm or less). Size 0402 ceramic capacitors
are recomended. The large 4.7
FcapacitorbetweenREFHA
and REFLA can be somewhat further away. The traces
connecting the pins and bypass capacitors must be kept
short and should be made as wide as possible.
The LTC1744 differential inputs should run parallel and
close to each other. The input traces should be as short as
possible to minimize capacitance and to minimize noise
pickup.
An analog ground plane separate from the digital process-
ing system ground should be used. All ADC ground pins
labeled GND should connect to this plane. All ADC VDD
bypass capacitors, reference bypass capacitors and input
filter capacitors should connect to this analog plane. The
LTC1744 has three output driver ground pins, labeled
OGND (Pins 27, 38 and 47). These grounds should con-
nect to the digital processing system ground. The output
driver supply, OVDD should be connected to the digital
processing system supply. OVDD bypasscapacitorsshould
bypass to the digital system ground. The digital process-
ing system ground should connected to the analog plane
at ADC OGND (Pin 38).
HEAT TRANSFER
Most of the heat generated by the LTC1744 is transferred
from the die through the package leads onto the printed
circuit board. In particular, ground pins 12, 13, 36 and 37
are fused to the die attach pad. These pins have the lowest
thermal resistance between the die and the outside envi-
ronment. It is critical that all ground pins are connected to
a ground plane of sufficient area. The layout of the evalu-
ation circuit shown on the following pages has a low ther-
mal resistance path to the internal ground plane by using
multiple vias near the ground pins. A ground plane of this
size results in a thermal resistance from the die to ambient
of 35
°C/W.Smallerareagroundplanesorpoorlyconnected
ground pins will result in higher thermal resistance.
APPLICATIO S I FOR ATIO
WU
U
相关PDF资料
PDF描述
VE-26B-MX-F1 CONVERTER MOD DC/DC 95V 75W
VI-213-IU-F1 CONVERTER MOD DC/DC 24V 200W
MS27484T14F97P CONN PLUG 12POS STRAIGHT W/PINS
VE-263-MX-F3 CONVERTER MOD DC/DC 24V 75W
VI-20Z-MY CONVERTER MOD DC/DC 2V 20W
相关代理商/技术参数
参数描述
LTC1744IFW#PBF 功能描述:IC ADC 14BIT 50MSPS 48-TSSOP RoHS:是 类别:集成电路 (IC) >> 数据采集 - 模数转换器 系列:- 标准包装:1 系列:- 位数:14 采样率(每秒):83k 数据接口:串行,并联 转换器数目:1 功率耗散(最大):95mW 电压电源:双 ± 工作温度:0°C ~ 70°C 安装类型:通孔 封装/外壳:28-DIP(0.600",15.24mm) 供应商设备封装:28-PDIP 包装:管件 输入数目和类型:1 个单端,双极
LTC1744IFW#TR 功能描述:IC ADC 14BIT 50MSPS 48-TSSOP RoHS:否 类别:集成电路 (IC) >> 数据采集 - 模数转换器 系列:- 标准包装:1 系列:- 位数:14 采样率(每秒):83k 数据接口:串行,并联 转换器数目:1 功率耗散(最大):95mW 电压电源:双 ± 工作温度:0°C ~ 70°C 安装类型:通孔 封装/外壳:28-DIP(0.600",15.24mm) 供应商设备封装:28-PDIP 包装:管件 输入数目和类型:1 个单端,双极
LTC1744IFW#TRPBF 功能描述:IC ADC 14BIT 50MSPS 48-TSSOP RoHS:是 类别:集成电路 (IC) >> 数据采集 - 模数转换器 系列:- 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:2,500 系列:- 位数:12 采样率(每秒):3M 数据接口:- 转换器数目:- 功率耗散(最大):- 电压电源:- 工作温度:- 安装类型:表面贴装 封装/外壳:SOT-23-6 供应商设备封装:SOT-23-6 包装:带卷 (TR) 输入数目和类型:-
LTC1745CFW 功能描述:IC ADC 12BIT 25MSPS LN 48TSSOP RoHS:否 类别:集成电路 (IC) >> 数据采集 - 模数转换器 系列:- 标准包装:1,000 系列:- 位数:12 采样率(每秒):300k 数据接口:并联 转换器数目:1 功率耗散(最大):75mW 电压电源:单电源 工作温度:0°C ~ 70°C 安装类型:表面贴装 封装/外壳:24-SOIC(0.295",7.50mm 宽) 供应商设备封装:24-SOIC 包装:带卷 (TR) 输入数目和类型:1 个单端,单极;1 个单端,双极
LTC1745CFW#PBF 功能描述:IC ADC 12BIT 25MSPS LN 48TSSOP RoHS:是 类别:集成电路 (IC) >> 数据采集 - 模数转换器 系列:- 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:2,500 系列:- 位数:12 采样率(每秒):3M 数据接口:- 转换器数目:- 功率耗散(最大):- 电压电源:- 工作温度:- 安装类型:表面贴装 封装/外壳:SOT-23-6 供应商设备封装:SOT-23-6 包装:带卷 (TR) 输入数目和类型:-