参数资料
型号: LTC3851AHMSE-1#PBF
厂商: LINEAR TECHNOLOGY CORP
元件分类: 稳压器
英文描述: 0.05 A SWITCHING CONTROLLER, 810 kHz SWITCHING FREQ-MAX, PDSO16
封装: LEAD FREE, PLASTIC, MSOP-16
文件页数: 15/30页
文件大小: 0K
代理商: LTC3851AHMSE-1#PBF
LTC3851A-1
22
3851a1fa
applicaTions inForMaTion
If the two MOSFETs have approximately the same
RDS(ON), then the resistance of one MOSFET can simply
be summed with the resistances of L and RSENSE to
obtainI2Rlosses.Forexample,ifeachRDS(ON)=10mΩ,
DCR = 10mΩ and RSENSE = 5mΩ, then the total resis-
tance is 25mΩ. This results in losses ranging from 2%
to 8% as the output current increases from 3A to 15A
for a 5V output, or a 3% to 12% loss for a 3.3V output.
Efficiency varies as the inverse square of VOUT for the
same external components and output power level. The
combined effects of increasingly lower output voltages
andhighercurrentsrequiredbyhighperformancedigital
systemsisnotdoublingbutquadruplingtheimportance
of loss terms in the switching regulator system!
4. Transition losses apply only to the topside MOSFET(s),
and become significant only when operating at high
input voltages (typically 15V or greater). Transition
losses can be estimated from:
Transition Loss = (1.7)VIN2 IO(MAX) CRSS f
Other hidden losses such as copper trace and the battery
internal resistance can account for an additional 5% to
10% efficiency degradation in portable systems. It is very
important to include these system level losses during the
design phase. The internal battery and fuse resistance
losses can be minimized by making sure that CIN has ad-
equate charge storage and very low ESR at the switching
frequency.A25Wsupplywilltypicallyrequireaminimumof
20μF to 40μF of capacitance having a maximum of 20mΩ
to 50mΩ of ESR. Other losses including Schottky con-
duction losses during dead time and inductor core losses
generally account for less than 2% total additional loss.
Checking Transient Response
The regulator loop response can be checked by looking at
the load current transient response. Switching regulators
take several cycles to respond to a step in DC (resistive)
load current. When a load step occurs, VOUT shifts by an
amount equal to ILOAD (ESR), where ESR is the effective
series resistance of COUT. ILOAD also begins to charge or
discharge COUT generating the feedback error signal that
forces the regulator to adapt to the current change and
return VOUT to its steady-state value. During this recovery
time VOUT can be monitored for excessive overshoot or
ringing, which would indicate a stability problem. The
availability of the ITH pin not only allows optimization of
control loop behavior but also provides a DC-coupled and
AC-filtered closed-loop response test point. The DC step,
rise time and settling at this test point truly reflects the
closed-loop response. Assuming a predominantly second
order system, phase margin and/or damping factor can be
estimated using the percentage of overshoot seen at this
pin.Thebandwidthcanalsobeestimatedbyexaminingthe
rise time at the pin. The ITH external components shown
in the Typical Application circuit will provide an adequate
starting point for most applications.
The ITH series RC-CC filter sets the dominant pole-zero
loop compensation. The values can be modified slightly
(from 0.5 to 2 times their suggested values) to optimize
transient response once the final PC layout is done and
the particular output capacitor type and value have been
determined. The output capacitors need to be selected
because the various types and values determine the loop
gain and phase. An output current pulse of 20% to 80%
of full-load current having a rise time of 1μs to 10μs will
produce output voltage and ITH pin waveforms that will
give a sense of the overall loop stability without breaking
the feedback loop. Placing a power MOSFET directly
across the output capacitor and driving the gate with an
appropriate signal generator is a practical way to produce
a realistic load step condition. The initial output voltage
step resulting from the step change in output current may
not be within the bandwidth of the feedback loop, so this
signal cannot be used to determine phase margin. This
is why it is better to look at the ITH pin signal which is in
the feedback loop and is the filtered and compensated
control loop response. The midband gain of the loop will
be increased by increasing RC and the bandwidth of the
loop will be increased by decreasing CC. If RC is increased
by the same factor that CCisdecreased,thezerofrequency
will be kept the same, thereby keeping the phase shift the
same in the most critical frequency range of the feedback
loop. The output voltage settling behavior is related to the
stability of the closed-loop system and will demonstrate
the actual overall supply performance.
相关PDF资料
PDF描述
LPD48SP 1-OUTPUT 75 W DC-DC REG PWR SUPPLY MODULE
LM2575S-12 3.2 A SWITCHING REGULATOR, 62 kHz SWITCHING FREQ-MAX, PSSO5
LK1601-7ERD0TB1 1-OUTPUT 150 W AC-DC REG PWR SUPPLY MODULE
LT1074HVCV 5.5 A SWITCHING REGULATOR, 200 kHz SWITCHING FREQ-MAX, PSIP11
LES010YE 1-OUTPUT 15 W DC-DC REG PWR SUPPLY MODULE
相关代理商/技术参数
参数描述
LTC3851AIGN#PBF 功能描述:IC REG CTRLR BUCK PWM CM 16-SSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:2,500 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:500kHz 占空比:96% 电源电压:4 V ~ 36 V 降压:无 升压:是 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:24-WQFN 裸露焊盘 包装:带卷 (TR)
LTC3851AIGN#TRPBF 功能描述:IC REG CTRLR BUCK PWM CM 16-SSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:2,500 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:500kHz 占空比:96% 电源电压:4 V ~ 36 V 降压:无 升压:是 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:24-WQFN 裸露焊盘 包装:带卷 (TR)
LTC3851AIMSE#PBF 功能描述:IC REG CTRLR BUCK PWM CM 16-MSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:2,500 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:500kHz 占空比:96% 电源电压:4 V ~ 36 V 降压:无 升压:是 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:24-WQFN 裸露焊盘 包装:带卷 (TR)
LTC3851AIMSE#TRPBF 功能描述:IC REG CTRLR BUCK PWM CM 16-MSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:2,500 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:500kHz 占空比:96% 电源电压:4 V ~ 36 V 降压:无 升压:是 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:24-WQFN 裸露焊盘 包装:带卷 (TR)
LTC3851AIMSE-1#PBF 功能描述:IC REG CTRLR BUCK PWM CM 16-MSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:2,500 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:500kHz 占空比:96% 电源电压:4 V ~ 36 V 降压:无 升压:是 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:24-WQFN 裸露焊盘 包装:带卷 (TR)