参数资料
型号: LTC3866EFE#TRPBF
厂商: Linear Technology
文件页数: 20/36页
文件大小: 0K
描述: IC REG CTRLR BUCK PWM CM 24TSSOP
标准包装: 2,500
PWM 型: 电流模式
输出数: 1
频率 - 最大: 850kHz
占空比: 95%
电源电压: 4.5 V ~ 38 V
降压:
升压:
回扫:
反相:
倍增器:
除法器:
Cuk:
隔离:
工作温度: -40°C ~ 125°C
封装/外壳: 24-TSSOP(0.173",4.40mm)裸露焊盘
包装: 带卷 (TR)
LTC3866
APPLICATIONS INFORMATION
C OUT >
? V OUT ≈ ? I RIPPLE ? ESR + ?
ThisformulahasamaximumatV IN =2V OUT ,whereI RMS
= I OUT /2. This simple worst-case condition is commonly
used for design because even significant deviations do not
offer much relief. Note that capacitor manufacturers’ ripple
current ratings are often based on only 2000 hours of life.
This makes it advisable to further derate the capacitor, or
to choose a capacitor rated at a higher temperature than
required. Several capacitors may be paralleled to meet
size or height requirements in the design. Due to the high
operating frequency of the LTC3866, ceramic capacitors
can also be used for C IN . Always consult the manufacturer
if there is any question.
Ceramic capacitors are becoming very popular for small
designs but several cautions should be observed. X7R, X5R
and Y5V are examples of a few of the ceramic materials
used as the dielectric layer, and these different dielectrics
have very different effect on the capacitance value due to
the voltage and temperature conditions applied. Physically,
if the capacitance value changes due to applied voltage
change, there is a concomitant piezo effect which results
in radiating sound! A load that draws varying current at
an audible rate may cause an attendant varying input volt-
age on a ceramic capacitor, resulting in an audible signal.
A secondary issue relates to the energy flowing back into
a ceramic capacitor whose capacitance value is being
reduced by the increasing charge. The voltage can increase
at a considerably higher rate than the constant current being
supplied because the capacitance value is decreasing as
the voltage is increasing! Nevertheless, ceramic capacitors,
when properly selected and used, can provide the lowest
overall loss due to their extremely low ESR.
A small (0.1μF to 1μF) bypass capacitor, C IN , between the
chip V IN pin and ground, placed close to the LTC3866, is
also suggested. A 2.2Ω to 10Ω resistor placed between
C IN and V IN pin provides further isolation.
The selection of C OUT is driven by the required effective
series resistance (ESR). Typically once the ESR require-
ment is satisfied the capacitance is adequate for filtering.
The steady-state output ripple ( ? V OUT ) is determined by:
? 1 ?
? 8fC OUT ?
where f = operating frequency, C OUT = output capacitance
and ? I RIPPLE = ripple current in the inductor. The output
ripple is highest at maximum input voltage since ? I RIPPLE
increases with input voltage. The output ripple will be less
than 50mV at maximum V IN with ? I RIPPLE = 0.4I OUT(MAX)
assuming:
C OUT required ESR < N ? R SENSE
and
1
( 8f ) ( R SENSE )
The emergence of very low ESR capacitors in small, surface
mount packages makes very small physical implementa-
tions possible. The ability to externally compensate the
switching regulator loop using the ITH pin allows a much
wider selection of output capacitor types. The impedance
characteristic of each capacitor type is significantly differ-
ent than an ideal capacitor and therefore requires accurate
modeling or bench evaluation during design. Manufacturers
such as Nichicon, Nippon Chemi-Con and Sanyo should be
considered for high performance through-hole capacitors.
The OS-CON semiconductor dielectric capacitors available
from Sanyo and the Panasonic SP surface mount types
have a good (ESR)(size) product.
Once the ESR requirement for C OUT has been met, the RMS
current rating generally far exceeds the I RIPPLE(P-P) require-
ment. Ceramic capacitors from AVX, Taiyo Yuden, Murata
and TDK offer high capacitance value and very low ESR,
especially applicable for low output voltage applications.
In surface mount applications, multiple capacitors may
have to be paralleled to meet the ESR or RMS current
handling requirements of the application. Aluminum
electrolytic and dry tantalum capacitors are both available
in surface mount configurations. New special polymer
surface mount capacitors offer very low ESR also but
have much lower capacitive density per unit volume. In
the case of tantalum, it is critical that the capacitors are
surge tested for use in switching power supplies. Several
excellent choices are the AVX TPS, AVX TPSV, the KEMET
T510 series of surface mount tantalums or the Panasonic
SP series of surface mount special polymer capacitors
3866fb
20
相关PDF资料
PDF描述
EEM43DREF CONN EDGECARD 86POS .156 EYELET
VI-JWL-EW-F4 CONVERTER MOD DC/DC 28V 100W
LTC3865IFE#TRPBF IC REG CTRLR BUCK PWM CM 38TSSOP
VI-JWL-EW-F2 CONVERTER MOD DC/DC 28V 100W
EBA49DRMN CONN EDGECARD 98POS .125 SQ WW
相关代理商/技术参数
参数描述
LTC3866EUF#PBF 功能描述:IC REG CTRLR BUCK PWM CM 24-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:2,500 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:500kHz 占空比:96% 电源电压:4 V ~ 36 V 降压:无 升压:是 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:24-WQFN 裸露焊盘 包装:带卷 (TR)
LTC3866EUF#TRPBF 功能描述:IC REG CTRLR BUCK PWM CM 24-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:2,500 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:500kHz 占空比:96% 电源电压:4 V ~ 36 V 降压:无 升压:是 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:24-WQFN 裸露焊盘 包装:带卷 (TR)
LTC3866IFE#PBF 功能描述:IC REG CTRLR BUCK PWM CM 24TSSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:2,000 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:1MHz 占空比:50% 电源电压:9 V ~ 10 V 降压:无 升压:是 回扫:是 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 85°C 封装/外壳:8-TSSOP(0.173",4.40mm 宽) 包装:带卷 (TR)
LTC3866IFE#PBF 制造商:Linear Technology 功能描述:BUCK REGULATOR CURRENT MODE SYNC TSSOP
LTC3866IFE#TRPBF 功能描述:IC REG CTRLR BUCK PWM CM 24TSSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:2,500 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:500kHz 占空比:96% 电源电压:4 V ~ 36 V 降压:无 升压:是 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:24-WQFN 裸露焊盘 包装:带卷 (TR)