参数资料
型号: MAX17015AETP+T
厂商: Maxim Integrated Products
文件页数: 19/23页
文件大小: 0K
描述: IC BATT CHARGER 1.2MHZ 20TQFN
标准包装: 2,500
功能: 充电管理
电池化学: 多化学
电源电压: 8 V ~ 26 V
工作温度: -40°C ~ 85°C
安装类型: 表面贴装
封装/外壳: 20-WFQFN 裸露焊盘
供应商设备封装: 20-TQFN-EP(4x4)
包装: 带卷 (TR)
1.2MHz, Low-Cost,
High-Performance Chargers
? V BATT ( MIN ) ?
PD COND ( LS ) = ? 1-
? × I CH G × R DS ( ON )
( HS ) = × t
× V
× I
× f
PD SW TRANS CSSP CHG SW
Generally, a low gate charge high-side MOSFET is pre-
ferred to minimize switching losses. However, the
R DS(ON) required to stay within package power dissi-
pation often limits how small the MOSFET can be. The
optimum occurs when the switching losses equal the
conduction losses. High-side switching losses do not
usually become an issue until the input is greater than
approximately 15V. Calculating the power dissipation in
N1 due to switching losses is difficult since it must
allow for difficult quantifying factors that influence the
turn-on and turn-off times. These factors include the
internal gate resistance, gate charge, threshold volt-
age, source inductance, and PCB layout characteris-
tics. The following switching-loss calculation provides
only a very rough estimate and is no substitute for
breadboard evaluation, preferably including a verifica-
tion using a thermocouple mounted on N1:
1
2
where t TRANS is the drivers transition time and can be
calculated as follows:
Switching losses in the high-side MOSFET can become
an insidious heat problem when maximum AC adapter
voltages are applied. If the high-side MOSFET chosen
for adequate R DS(ON) at low-battery voltages becomes
hot when biased from V DCIN(MAX) , consider choosing
another MOSFET with lower parasitic capacitance.
For the low-side MOSFET (N2), the worst-case power
dissipation always occurs at maximum input voltage:
2
? V CSSP ( MAX ) ?
The following additional loss occurs in the low-side
MOSFET due to the body diode conduction losses:
PD BDY ( LS ) = 0 . 05 × I PEAK × 0 . 4 V
The total power low-side MOSFET dissipation is:
PD TOTAL ( LS ) ≈ PD COND ( LS ) + PD BDY ( LS )
These calculations provide an estimate and are not a
substitute for breadboard evaluation, preferably
including a verification using a thermocouple mounted
t TRANS = ?
+
? 1 1 ?
?
? I GSRC I GSNK ?
× ( Q GD + Q GS )
on the MOSFET.
Inductor Selection
I GSRC and I GSNK are the peak gate-drive source/sink
current (3 Ω sourcing and 0.8 Ω sinking, typically). The
MAX17005A/MAX17006A/MAX17015A control the
switching frequency as shown in the Typical Operating
Characteristics.
The following is the power dissipated due to high-side
n-channel MOSFET’s output capacitance (C RSS ):
The selection of the inductor has multiple trade-offs
between efficiency, transient response, size, and cost.
Small inductance is cheap and small, and has a better
transient response due to higher slew rate; however, the
efficiency is lower because of higher RMS current. High
inductance results in lower ripple so that the need of the
output capacitors for output-voltage ripple goes low.
The MAX17005A/MAX17006A/MAX17015A combine all
PD CRSS ( HS ) ≈
V 2 CSSP × C RSS × f SW
2
the inductor trade-offs in an optimum way by controlling
switching frequency. High-frequency operation permits
the use of a smaller and cheaper inductor, and conse-
PD QRR ( HS ) =
The  following  high-side  MOSFET’s  loss  is  due  to  the
reverse-recovery charge of the low-side MOSFET ’s
body diode:
Q RR2 × V CSSP × f SW
2
quently results in smaller output ripple and better tran-
sient response.
The charge current, ripple, and operating frequency
(off-time) determine the inductor characteristics. For
optimum efficiency, choose the inductance according
to the following equation:
Ignore PD QRR (HS) if a Schottky diode is used parallel
to a low-side MOSFET.
The total high-side MOSFET power dissipation is:
PD TOTAL ( HS ) ≈ PD COND ( HS ) + PD SW ( HS )
+ PD CRSS ( HS ) + PD QRR ( HS )
L =
where k = 35ns/V.
k × V IN 2
4 × I CHG × LIR MAX
______________________________________________________________________________________
19
相关PDF资料
PDF描述
SC43-470 INDUCTOR SMD 47UH 0.54A 2.52MHZ
GMM11DRUS CONN EDGECARD 22POS DIP .156 SLD
GCC18DRTN-S13 CONN EDGECARD 36POS .100 EXTEND
0210490818 CABLE JUMPER 1.25MM .127M 13POS
GSC10DRXS-S734 CONN EDGECARD 20POS DIP .100 SLD
相关代理商/技术参数
参数描述
MAX17015BETP+ 功能描述:电池管理 1.2MHz High-Perf Charger RoHS:否 制造商:Texas Instruments 电池类型:Li-Ion 输出电压:5 V 输出电流:4.5 A 工作电源电压:3.9 V to 17 V 最大工作温度:+ 85 C 最小工作温度:- 40 C 封装 / 箱体:VQFN-24 封装:Reel
MAX17015BETP+T 功能描述:电池管理 1.2MHz High-Perf Charger RoHS:否 制造商:Texas Instruments 电池类型:Li-Ion 输出电压:5 V 输出电流:4.5 A 工作电源电压:3.9 V to 17 V 最大工作温度:+ 85 C 最小工作温度:- 40 C 封装 / 箱体:VQFN-24 封装:Reel
MAX17015ETP+ 功能描述:电池管理 1.2MHz High-Perf Charger RoHS:否 制造商:Texas Instruments 电池类型:Li-Ion 输出电压:5 V 输出电流:4.5 A 工作电源电压:3.9 V to 17 V 最大工作温度:+ 85 C 最小工作温度:- 40 C 封装 / 箱体:VQFN-24 封装:Reel
MAX17015ETP+T 功能描述:电池管理 1.2MHz High-Perf Charger RoHS:否 制造商:Texas Instruments 电池类型:Li-Ion 输出电压:5 V 输出电流:4.5 A 工作电源电压:3.9 V to 17 V 最大工作温度:+ 85 C 最小工作温度:- 40 C 封装 / 箱体:VQFN-24 封装:Reel
MAX17015ETP+TG51 功能描述:电池管理 RoHS:否 制造商:Texas Instruments 电池类型:Li-Ion 输出电压:5 V 输出电流:4.5 A 工作电源电压:3.9 V to 17 V 最大工作温度:+ 85 C 最小工作温度:- 40 C 封装 / 箱体:VQFN-24 封装:Reel