参数资料
型号: MAX17085GTL+
厂商: Maxim Integrated Products
文件页数: 26/38页
文件大小: 0K
描述: IC CHARGER/CTLR/LDO REG 40-TQFN
产品培训模块: Lead (SnPb) Finish for COTS
Obsolescence Mitigation Program
标准包装: 50
功能: 充电管理
电池化学: 多化学
电源电压: 4.5 V ~ 24 V
工作温度: -40°C ~ 85°C
安装类型: 表面贴装
封装/外壳: 40-WFQFN 裸露焊盘
供应商设备封装: 40-TQFN-EP(5x5)
包装: 托盘
Integrated Charger, Dual Main Step-Down
Controllers, and Dual LDO Regulators
t ON =
I RIPPLE = BATT OFF
f SW =
Continuous Conduction Mode
With sufficiently large charge current, the MAX17085B's
inductor current never crosses zero, which is defined
as continuous conduction mode. The controller starts a
new cycle by turning on the high-side MOSFET and turn-
ing off the low-side MOSFET. When the charge-current
feedback signal (CSI) is greater than the control point
(LVC), the CCMP comparator output goes high and the
controller initiates the off-time by turning off the high-
side MOSFET and turning on the low-side MOSFET. The
operating frequency is governed by the off-time and is
dependent upon V CSIN and V DCIN .
The on-time can be determined using the following equation:
L × I RIPPLE
V DCIN - V BATT
where:
V × t
L
The switching frequency can then be calculated:
1
t ON + t OFF
At the end of the computed off-time, the controller initi-
ates a new cycle if the control point (LVC) is greater than
5mV (referred at V CSIP - V CSIN ), and the peak charge
current is less than the cycle-by-cycle current limit.
Restated another way, IMIN must be high, IMAX must
be low, and OVP must be low for the controller to initiate
a new cycle. If the peak inductor current exceeds IMAX
comparator threshold or the output voltage exceeds
the OVP threshold, then the on-time is terminated. The
cycle-by-cycle current limit effectively protects against
overcurrent and short-circuit faults.
If during the off-time the inductor current goes to zero,
the ZCMP comparator output pulls high, turning off the
low-side MOSFET. Both the high- and low-side MOSFETs
are turned off until another cycle is ready to begin. ZCMP
causes the MAX17085B to enter into the discontinuous
conduction mode (see the Discontinuous Conduction
section).
Discontinuous Conduction
The MAX17085B can also operate in discontinuous
conduction mode to ensure that the inductor current is
always positive. The MAX17085B enters discontinuous
conduction mode when the output of the LVC control
point falls below 5mV (referred at V CSIP - V CSIN ). For
RS2 = 20m I , this corresponds to peak inductor current
to be 250mA.
In discontinuous mode, a new cycle is not started until
the LVC voltage rises above 5mV. Discontinuous mode
operation can occur during a conditioning charge of
overdischarged battery packs, when the charge current
has been reduced sufficiently by the CCS control loop,
or when the charger is in constant-voltage mode with a
nearly full battery pack.
Compensation
The charge voltage, charge current, and input current-
limit regulation loops are compensated separately and
independently. The charge-current limit loop, CCI, is
compensated internally, while the input current limit and
charge-voltage loops, CCS and CCV, are compensated
externally using a shared capacitor at the CC pin. For
most applications, it is sufficient to place a 10nF capaci-
tor from CC to GND.
Main SMPS Detailed Description
The main SMPS of the MAX17085B consists of two inde-
pendent switching regulators that generate a 3.3V and a 5V
output. The regulators use the Quick-PWM control architec-
ture for simplicity, low pin count, and fast transient response.
An extended on-time feature further improves output voltage
sag for high-duty-cycle applications.
Free-Running Constant-On-Time PWM
Controller with Input Feed-Forward
The Quick-PWM control architecture is a pseudo-fixed-
frequency, constant on-time, current-mode regulator with
voltage feed-forward. This architecture relies on the output
filter capacitor’s ESR to act as a current-sense resistor, so
the feedback ripple voltage provides the PWM ramp signal.
The control algorithm is simple: the high-side switch on-time
is determined solely by a one-shot whose pulse width is
inversely proportional to input voltage and directly propor-
tional to output voltage. Another one-shot sets a minimum
off-time (270ns typ). The on-time one-shot is triggered if the
error comparator is low, the low-side switch current is below
the valley current-limit threshold, and the minimum off-time
one-shot has timed out.
On-Time One-Shot
The heart of the PWM core is the one-shot that sets the
high-side switch on-time. This fast, low-jitter, adjustable
one-shot includes circuitry that varies the on-time in
response to battery and output voltage. The high-side
switch on-time is inversely proportional to the battery
voltage as sensed by the TON input, and proportional to
the output voltage:
26
_____________________________________________________________________________________
相关PDF资料
PDF描述
MAX1708EEE+T IC REG BST 3.3V/5V/ADJ 5A 16QSOP
MAX17094ETM+T IC REG BOOST ADJ 1A 7OUT 48TQFN
MAX1709ESE IC REG BST 3.3V/5V/ADJ 4A 16SOIC
MAX17100ETM+T IC REG BOOST INT-SWITCH 48-TQFN
MAX17101ETJ+T IC REG CTRLR DIV PWM CM 32TQFNEP
相关代理商/技术参数
参数描述
MAX17085GTL+ 功能描述:电池管理 Dual Main Step-Down Controller RoHS:否 制造商:Texas Instruments 电池类型:Li-Ion 输出电压:5 V 输出电流:4.5 A 工作电源电压:3.9 V to 17 V 最大工作温度:+ 85 C 最小工作温度:- 40 C 封装 / 箱体:VQFN-24 封装:Reel
MAX17086GTL+ 功能描述:电池管理 Dual Main Step-Down Controller RoHS:否 制造商:Texas Instruments 电池类型:Li-Ion 输出电压:5 V 输出电流:4.5 A 工作电源电压:3.9 V to 17 V 最大工作温度:+ 85 C 最小工作温度:- 40 C 封装 / 箱体:VQFN-24 封装:Reel
MAX17088ETX+ 功能描述:显示驱动器和控制器 Boost & Level Shift for Notebook RoHS:否 制造商:Panasonic Electronic Components 工作电源电压:2.7 V to 5.5 V 最大工作温度: 安装风格:SMD/SMT 封装 / 箱体:QFN-44 封装:Reel
MAX17088ETX+T 功能描述:显示驱动器和控制器 Boost & Level Shift for Notebook RoHS:否 制造商:Panasonic Electronic Components 工作电源电压:2.7 V to 5.5 V 最大工作温度: 安装风格:SMD/SMT 封装 / 箱体:QFN-44 封装:Reel
MAX17088EVKIT+ 功能描述:电源管理IC开发工具 MAX17088 Eval Kit RoHS:否 制造商:Maxim Integrated 产品:Evaluation Kits 类型:Battery Management 工具用于评估:MAX17710GB 输入电压: 输出电压:1.8 V