参数资料
型号: MAX1864TEEE+
厂商: Maxim Integrated Products
文件页数: 13/25页
文件大小: 0K
描述: IC PWR SUPPLY CONTROLLER 16QSOP
产品培训模块: Lead (SnPb) Finish for COTS
Obsolescence Mitigation Program
标准包装: 100
应用: 电源控制器
输入电压: 4.5 V ~ 28 V
电流 - 电源: 1mA
工作温度: -40°C ~ 85°C
安装类型: 表面贴装
封装/外壳: 16-SSOP(0.154",3.90mm 宽)
供应商设备封装: 16-QSOP
包装: 管件
xDSL/Cable Modem Triple/Quintuple Output
Power Supplies
Current-Limit Circuit
The current-limit circuit employs a unique “valley” cur-
rent-limiting algorithm that uses the low-side MOSFET’s
on-resistance as a sensing element (Figure 3). If the
voltage across the low-side MOSFET (R DS(ON) ? I IN-
DUCTOR ) exceeds the current-limit threshold at the
beginning of a new oscillator cycle, the MAX1864/
MAX1865 will not turn on the high-side MOSFET. The
actual peak current is greater than the current-limit
threshold by an amount equal to the inductor ripple
-I PEAK
I LOAD
I VALLEY
[
( ) ]
current. Therefore, the exact current-limit characteristic
and maximum load capability are a function of the low-
side MOSFET on-resistance, inductor value, input volt-
I PEAK = I VALLEY +
(V IN - V OUT )
L
V OUT
V IN f OSC
age, and output voltage. The reward for this uncertainty
is robust, loss-less overcurrent limiting.
In adjustable mode, the current-limit threshold voltage
is 1/5th the voltage seen at ILIM (I VALLEY = 0.2 ? V ILIM ).
Adjust the current-limit threshold by connecting a resis-
tive-divider from VL to ILIM to GND. The current-limit
threshold can be set from 106mV to 530mV, which cor-
responds to ILIM input voltages of 500mV to 2.5V. This
adjustable current limit accommodates MOSFETs with
a wide range of on-resistance characteristics (see
Design Procedure ). The current-limit threshold defaults
to 250mV when ILIM is connected to VL. The logic
threshold for switchover to the 250mV default value is
approximately VL - 1V.
Carefully observe the PC board layout guidelines to
ensure that noise and DC errors don’t corrupt the cur-
rent-sense signals seen by LX and GND. The IC must
be mounted close to the low-side MOSFET with short
(less than 5mm), direct traces making a Kelvin sense
connection.
Synchronous Rectifier Driver (DL)
Synchronous rectification reduces conduction losses in
the rectifier by replacing the normal Schottky catch
diode with a low-resistance MOSFET switch. The
MAX1864/MAX1865 also use the synchronous rectifier
to ensure proper startup of the boost gate-driver circuit
and to provide the current-limit signal.
The DL low-side drive waveform is always the comple-
ment of the DH high-side drive waveform (with con-
trolled dead time to prevent cross-conduction or
“shoot-through”). A dead-time circuit monitors the DL
output and prevents the high-side FET from turning on
until DL is fully off. For the dead-time circuit to work
properly, there must be a low-resistance, low-induc-
tance path from the DL driver to the MOSFET gate.
Otherwise, the sense circuitry in the MAX1864/
MAX1865 will interpret the MOSFET gate as “off” when
gate charge actually remains. Use very short, wide
TIME
Figure 3. “Valley” Current-Limit Threshold Point
traces (50mil to 100mil wide if the MOSFET is 1 inch
from the device). The dead time at the other edge (DH
turning off) is determined by a fixed internal delay.
High-Side Gate-Drive Supply (BST)
Gate-drive voltage for the high-side N-channel switch is
generated by a flying-capacitor boost circuit (Figure 1).
The capacitor between BST and LX is alternately
charged from the VL supply and placed parallel to the
high-side MOSFET’s gate-source terminals.
On startup, the synchronous rectifier (low-side MOS-
FET) forces LX to ground and charges the boost
capacitor to 5V. On the second half-cycle, the switch-
mode power supply turns on the high-side MOSFET by
closing an internal switch between BST and DH. This
provides the necessary gate-to-source voltage to turn
on the high-side switch, an action that boosts the 5V
gate-drive signal above the battery voltage.
Internal 5V Linear Regulator (VL)
All MAX1864/MAX1865 functions, except the current-
sense amplifier, are internally powered from the on-
chip, low-dropout 5V regulator. The maximum regulator
input voltage (V IN ) is 28V. Bypass the regulator’s output
(VL) with at least a 1μF ceramic capacitor to GND. The
V IN -to-VL dropout voltage is typically 200mV, so when
V IN is less than 5.2V, VL is typically V IN - 200mV.
The internal linear regulator can source up to 20mA to
supply the IC, power the low-side gate driver, charge
the external boost capacitor, and supply small external
loads. When driving particularly large FETs, little or no
regulator current may be available for external loads.
For example, when switched at 200kHz, a large FET
with 40nC total gate charge requires 40nC x 200kHz,
or 8mA.
______________________________________________________________________________________
13
相关PDF资料
PDF描述
RNF-100-1/16-CL-SP HEAT SHRINK TUBING
GBC20DRTH-S734 CONN EDGECARD 40POS DIP .100 SLD
H6MMH-1636M DIP CABLE - HDM16H/AE16M/HDM16H
0982661101 CBL 39POS 0.5MM JMPR TYPE A 3"
V300B3V3E100BG3 CONVERTER MOD DC/DC 3.3V 100W
相关代理商/技术参数
参数描述
MAX1864TEEE+ 功能描述:DC/DC 开关控制器 xDSL/Cable Modem Triple/Quint Output RoHS:否 制造商:Texas Instruments 输入电压:6 V to 100 V 开关频率: 输出电压:1.215 V to 80 V 输出电流:3.5 A 输出端数量:1 最大工作温度:+ 125 C 安装风格: 封装 / 箱体:CPAK
MAX1864TEEE+T 功能描述:电流和电力监控器、调节器 xDSL/Cable Modem Triple/Quint Output RoHS:否 制造商:STMicroelectronics 产品:Current Regulators 电源电压-最大:48 V 电源电压-最小:5.5 V 工作温度范围:- 40 C to + 150 C 安装风格:SMD/SMT 封装 / 箱体:HPSO-8 封装:Reel
MAX1864TEEE-T 功能描述:电流和电力监控器、调节器 RoHS:否 制造商:STMicroelectronics 产品:Current Regulators 电源电压-最大:48 V 电源电压-最小:5.5 V 工作温度范围:- 40 C to + 150 C 安装风格:SMD/SMT 封装 / 箱体:HPSO-8 封装:Reel
MAX1864UEEE 功能描述:电流和电力监控器、调节器 RoHS:否 制造商:STMicroelectronics 产品:Current Regulators 电源电压-最大:48 V 电源电压-最小:5.5 V 工作温度范围:- 40 C to + 150 C 安装风格:SMD/SMT 封装 / 箱体:HPSO-8 封装:Reel
MAX1864UEEE-T 功能描述:电流和电力监控器、调节器 RoHS:否 制造商:STMicroelectronics 产品:Current Regulators 电源电压-最大:48 V 电源电压-最小:5.5 V 工作温度范围:- 40 C to + 150 C 安装风格:SMD/SMT 封装 / 箱体:HPSO-8 封装:Reel