参数资料
型号: MAX5887EGK+D
厂商: Maxim Integrated Products
文件页数: 5/18页
文件大小: 0K
描述: IC DAC 14BIT 3.3V 500MSPS 68-QFN
产品培训模块: Lead (SnPb) Finish for COTS
Obsolescence Mitigation Program
标准包装: 30
设置时间: 11ns
位数: 14
数据接口: 并联
转换器数目: 1
电压电源: 模拟和数字
功率耗散(最大): 130mW
工作温度: -40°C ~ 85°C
安装类型: 表面贴装
封装/外壳: 68-VFQFN 裸露焊盘
供应商设备封装: 68-QFN 裸露焊盘(10x10)
包装: 管件
输出数目和类型: 2 电流,单极
采样率(每秒): 500M
MAX5887
3.3V, 14-Bit, 500Msps High Dynamic
Performance DAC with Differential LVDS Inputs
______________________________________________________________________________________
13
tiguous W-CDMA carriers spread their IM products
over a bandwidth of 20MHz on either side of the 20MHz
total carrier bandwidth. In this four-carrier scenario,
only the energy in the first adjacent 3.84MHz side band
is considered for ACLR 1. To measure ACLR, drive the
converter with a W-CDMA pattern. Make sure that the
signal is backed off by the peak-to-average ratio, such
that the DAC is not clipping the signal. ACLR can then
be measured with the ACLR measurement function
built into your spectrum analyzer.
Figure 9 shows the ACLR performance for a single
W-CDMA carrier (fCLK = 184.32MHz, fOUT =
61.44MHz) applied to the MAX5887 (including mea-
surement system limitations*).
Figure 10 illustrates the ACLR test results for the
MAX5887 with a four-carrier W-CDMA signal at an out-
put frequency of 63.93MHz and sampling frequency of
184.32MHz. Considerable care must be taken to
ensure accurate measurement of this parameter.
Multitone Testing for GSM/EDGE
Applications
The transmitter sections of multicarrier base station
transceiver systems for GSM/EDGE usually present
communication DAC manufacturers with the difficult
task of providing devices with higher resolution, while
simultaneously reducing noise and spurious emissions
over a desired bandwidth.
To specify noise and spurious emissions from base sta-
tions, a GSM/EDGE Tx mask is used to identify the DAC
requirements for these parameters. This mask shows
that the allowable levels for noise and spurious emis-
sions are dependent on the offset frequency from the
transmitted carrier frequency. The GSM/EDGE mask
and its specifications are based on a single active car-
rier with any other carriers in the transmitter being dis-
abled. Specifications displayed in Figure 11 support
per-carrier output power levels of 20W or greater.
Lower output power levels yield less-stringent emission
requirements. For GSM/EDGE applications, the DAC
demands spurious emission levels of less than -80dBc
for offset frequencies
≥6MHz. Spurious products from
the DAC can combine with both random noise and spu-
rious products from other circuit elements. The spuri-
ous products from the DAC should therefore be backed
off by 6dB or more to allow for these other sources and
still avoid signal clipping.
The number of carriers and their signal levels with
respect to the full scale of the DAC are important as
well. Unlike a full-scale sine wave, the inherent nature
of a multitone signal contains higher peak-to-RMS
ratios, raising the prospect for potential clipping, if the
signal level is not backed off appropriately. If a trans-
mitter operates with four/eight in-band carriers, each
individual carrier must be operated at less than
-12dB FS/-18dB FS to avoid waveform clipping.
*Note that due to their own IM effects and noise limitations, spectrum analyzers introduce ACLR errors, which can falsify the measure-
ment. For a single-carrier ACLR measurement greater than 70dB, these measurement limitations are significant, becoming even more
restricting for multicarrier measurement. Before attempting an ACLR measurement, it is recommended consulting application notes pro-
vided by major spectrum analyzer manufacturers that provide useful tips on how to use their instruments for such tests.
-125
-100
-110
-120
-90
-80
-70
-60
-50
-30
-40
ANALOG
OUTPUT
POWER
(dBm)
-25
3.5MHz/div
fCENTER = 61.44MHz
fCLK = 184.32Mbps
ACLR = 72dB
Figure 9. ACLR for W-CDMA Modulation, Single Carrier
-125
-100
-110
-120
-90
-80
-70
-60
-50
-25
-40
-30
3.5MHz/div
fCENTER = 63.93MHz
fCLK = 184.32Mbps
ACLR = 66dB
ANALOG
OUTPUT
POWER
(dBm)
Figure 10. ACLR for W-CDMA Modulation, Four Carriers
相关PDF资料
PDF描述
MAX5888EGK+D IC DAC 16BIT 3.3V 500MSPS 68-QFN
MAX5889EGK+D IC DAC 12BIT LVDS 600MSPS 68-QFN
MAX5890EGK+D IC DAC 14BIT LVDS 600MSPS 68-QFN
MAX5891EGK+D IC DAC 16BIT LVDS 600MSPS 68-QFN
MAX5893EGK+D IC DAC 12BIT DUAL 500MSPS 68-QFN
相关代理商/技术参数
参数描述
MAX5887EGK-TD 功能描述:数模转换器- DAC RoHS:否 制造商:Texas Instruments 转换器数量:1 DAC 输出端数量:1 转换速率:2 MSPs 分辨率:16 bit 接口类型:QSPI, SPI, Serial (3-Wire, Microwire) 稳定时间:1 us 最大工作温度:+ 85 C 安装风格:SMD/SMT 封装 / 箱体:SOIC-14 封装:Tube
MAX5887EVKIT 功能描述:数模转换器- DAC Evaluation Kit for the MAX5886 MAX5887 MAX5888 RoHS:否 制造商:Texas Instruments 转换器数量:1 DAC 输出端数量:1 转换速率:2 MSPs 分辨率:16 bit 接口类型:QSPI, SPI, Serial (3-Wire, Microwire) 稳定时间:1 us 最大工作温度:+ 85 C 安装风格:SMD/SMT 封装 / 箱体:SOIC-14 封装:Tube
MAX5888AEGK 制造商:Rochester Electronics LLC 功能描述: 制造商:Maxim Integrated Products 功能描述:
MAX5888AEGK+D 功能描述:数模转换器- DAC 16-Bit 500Msps DAC RoHS:否 制造商:Texas Instruments 转换器数量:1 DAC 输出端数量:1 转换速率:2 MSPs 分辨率:16 bit 接口类型:QSPI, SPI, Serial (3-Wire, Microwire) 稳定时间:1 us 最大工作温度:+ 85 C 安装风格:SMD/SMT 封装 / 箱体:SOIC-14 封装:Tube
MAX5888AEGK+TD 功能描述:数模转换器- DAC 16-Bit 500Msps DAC RoHS:否 制造商:Texas Instruments 转换器数量:1 DAC 输出端数量:1 转换速率:2 MSPs 分辨率:16 bit 接口类型:QSPI, SPI, Serial (3-Wire, Microwire) 稳定时间:1 us 最大工作温度:+ 85 C 安装风格:SMD/SMT 封装 / 箱体:SOIC-14 封装:Tube