参数资料
型号: MAX8742EAI+T
厂商: Maxim Integrated Products
文件页数: 23/34页
文件大小: 0K
描述: IC CNTRLR PWR SUP 28-SSOP
产品培训模块: Lead (SnPb) Finish for COTS
Obsolescence Mitigation Program
标准包装: 2,000
应用: 控制器,笔记本电脑电源系统
输入电压: 4.2 V ~ 30 V
输出数: 2
输出电压: 3.3V,5V,2.5 V ~ 5.5 V
工作温度: 0°C ~ 85°C
安装类型: 表面贴装
封装/外壳: 28-SSOP(0.209",5.30mm 宽)
供应商设备封装: 28-SSOP
包装: 带卷 (TR)
500kHz Multi-Output Power-Supply Controllers
with High Impedance in Shutdown
PD upperFET LOAD DS ( ON ) × DUTY
= I
× R
+ 20 ns ?
?
?
?
where:
V SEC = the minimum required rectified secondary out-
put voltage
V FWD = the forward drop across the secondary
rectifier
V OUT(MIN) = the minimum value of the main output volt-
age (from the Electrical Characteristics tables)
V RECT = the on-state voltage drop across the
synchronous-rectifier MOSFET
V SENSE = the voltage drop across the sense
resistor
In positive-output applications, the transformer sec-
ondary return is often referred to the main output volt-
age, rather than to ground, to reduce the needed turns
ratio. In this case, the main output voltage must first be
subtracted from the secondary voltage to obtain V SEC .
Selecting Other Components
MOSFET Switches
The high-current n-channel MOSFETs must be logic-
level types with guaranteed on-resistance specifica-
tions at V GS = 4.5V. Lower gate-threshold
specifications are better (i.e., 2V max rather than 3V
max). Drain-source breakdown voltage ratings must at
least equal the maximum input voltage, preferably with
a 20% derating factor. The best MOSFETs have the
lowest on-resistance per nanocoulomb of gate charge.
Multiplying R DS(ON) ? Q G provides a good figure for
comparing various MOSFETs. Newer MOSFET process
technologies with dense cell structures generally per-
form best. The internal gate drivers tolerate >100nC
total gate charge, but 70nC is a more practical upper
limit to maintain best switching times.
In high-current applications, MOSFET package power
dissipation often becomes a dominant design factor.
I 2 R power losses are the greatest heat contributor for
both high-side and low-side MOSFETs. I 2 R losses are
distributed between Q1 and Q2 according to duty fac-
tor (see the following equations). Generally, switching
losses affect only the upper MOSFET, since the
Schottky rectifier clamps the switching node in most
cases before the synchronous rectifier turns on. Gate-
charge losses are dissipated by the driver and do not
heat the MOSFET. Calculate the temperature rise
according to package thermal-resistance specifications
to ensure that both MOSFETs are within their maximum
junction temperature at high ambient temperature. The
worst-case dissipation for the high-side MOSFET
occurs at both extremes of input voltage, and the
worst-case dissipation for the low-side MOSFET occurs
at maximum input voltage:
2
+ V IN × I LOAD × f ×
? V IN × C RSS ?
I GATE
PD upperFET = I LOAD 2 × R DS ( ON ) × ( 1 - DUTY )
DUTY = ( V OUT + V Q 2 ) / ( V IN - V Q 1 )
where:
on-state voltage drop V Q_ = I LOAD ? R DS(ON)
C RSS = MOSFET reverse transfer capacitance
I GATE = DH driver peak output current capability (1A typ)
20ns = DH driver inherent rise/fall time
During short circuit, the MAX8741/MAX8742s' output
undervoltage shutdown protects the synchronous recti-
fier under output short-circuit conditions.
To reduce EMI, add a 0.1μF ceramic capacitor from the
high-side switch drain to the low-side switch source.
Rectifier Clamp Diode
The rectifier diode is a clamp across the low-side
MOSFET that catches the negative inductor swing dur-
ing the 60ns dead time between turning one MOSFET
off and each low-side MOSFET on. The latest genera-
tions of MOSFETs incorporate a high-speed Schottky
diode, which serves as an adequate clamp diode. For
MOSFETs without integrated Schottky diodes, place a
Schottky diode in parallel with the low-side MOSFET.
Use a Schottky diode with a DC current rating equal to
1/3rd the load current. The Schottky diode ’s rated
reverse breakdown voltage must be at least equal to
the maximum input voltage, preferably with a 20% der-
ating factor.
Boost-Supply Diode
A signal diode such as a 1N4148 works well in most
applications. If the input voltage can go below +6V, use
a small (20mA) Schottky diode for slightly improved
efficiency and dropout characteristics. Do not use
large-power diodes, such as 1N5817 or 1N4001, since
high junction capacitance can pump up V L to exces-
sive voltages.
______________________________________________________________________________________
23
相关PDF资料
PDF描述
MAX8741EAI+T IC CNTRLR PWR SUP 28-SSOP
SH471M010ST CAP ALUM 470UF 10V 20% RADIAL
RYM43DTAH CONN EDGECARD 86POS R/A .156 SLD
RYM43DTAD CONN EDGECARD 86POS R/A .156 SLD
RCC50DRXH CONN EDGECARD 100PS DIP .100 SLD
相关代理商/技术参数
参数描述
MAX8743EEI 功能描述:电流型 PWM 控制器 RoHS:否 制造商:Texas Instruments 开关频率:27 KHz 上升时间: 下降时间: 工作电源电压:6 V to 15 V 工作电源电流:1.5 mA 输出端数量:1 最大工作温度:+ 105 C 安装风格:SMD/SMT 封装 / 箱体:TSSOP-14
MAX8743EEI+ 功能描述:电流型 PWM 控制器 Dual Step-Down Controller RoHS:否 制造商:Texas Instruments 开关频率:27 KHz 上升时间: 下降时间: 工作电源电压:6 V to 15 V 工作电源电流:1.5 mA 输出端数量:1 最大工作温度:+ 105 C 安装风格:SMD/SMT 封装 / 箱体:TSSOP-14
MAX8743EEI+T 功能描述:电流型 PWM 控制器 Dual Step-Down Controller RoHS:否 制造商:Texas Instruments 开关频率:27 KHz 上升时间: 下降时间: 工作电源电压:6 V to 15 V 工作电源电流:1.5 mA 输出端数量:1 最大工作温度:+ 105 C 安装风格:SMD/SMT 封装 / 箱体:TSSOP-14
MAX8743EEI-T 功能描述:电流型 PWM 控制器 RoHS:否 制造商:Texas Instruments 开关频率:27 KHz 上升时间: 下降时间: 工作电源电压:6 V to 15 V 工作电源电流:1.5 mA 输出端数量:1 最大工作温度:+ 105 C 安装风格:SMD/SMT 封装 / 箱体:TSSOP-14
MAX8743ETX 功能描述:电流型 PWM 控制器 RoHS:否 制造商:Texas Instruments 开关频率:27 KHz 上升时间: 下降时间: 工作电源电压:6 V to 15 V 工作电源电流:1.5 mA 输出端数量:1 最大工作温度:+ 105 C 安装风格:SMD/SMT 封装 / 箱体:TSSOP-14