参数资料
型号: MPC93R51FAR2
厂商: FREESCALE SEMICONDUCTOR INC
元件分类: 时钟及定时
英文描述: 93R SERIES, PLL BASED CLOCK DRIVER, 9 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQFP32
封装: 7 X 7 MM, PLASTIC, LQFP-32
文件页数: 7/9页
文件大小: 336K
代理商: MPC93R51FAR2
MPC93R51
MOTOROLA ADVANCED CLOCK DRIVERS DEVICE DATA
136
Figure 5. VCCA Power Supply Filter
VCCA
VCC
MPC93R51
0.01 F
22 F
RF
VCC
0.01 F
As the noise frequency crosses the series resonant point of
an individual capacitor its overall impedance begins to look
inductive and thus increases with increasing frequency. The
parallel capacitor combination shown ensures that a low im-
pedance path to ground exists for frequencies well above the
bandwidth of the PLL. Although the MPC93R51 has several
design features to minimize the susceptibility to power supply
noise (isolated power and grounds and fully differential PLL)
there still may be applications in which overall performance is
being degraded due to system power supply noise. The power
supply filter schemes discussed in this section should be ade-
quate to eliminate power supply noise related problems in
most designs.
Driving Transmission Lines
The MPC93R51 clock driver was designed to drive high
speed signals in a terminated transmission line environment.
To provide the optimum flexibility to the user the output drivers
were designed to exhibit the lowest impedance possible. With
an output impedance of less than 20
the drivers can drive
either parallel or series terminated transmission lines. For
more information on transmission lines the reader is referred to
Motorola application note AN1091. In most high performance
clock networks point-to-point distribution of signals is the meth-
od of choice. In a point-to-point scheme either series termi-
nated or parallel terminated transmission lines can be used.
The parallel technique terminates the signal at the end of the
line with a 50
resistance to VCC÷2.
This technique draws a fairly high level of DC current and
thus only a single terminated line can be driven by each output
of the MPC93R51 clock driver. For the series terminated case
however there is no DC current draw, thus the outputs can
drive multiple series terminated lines. Figure 6 “Single versus
Dual Transmission Lines” illustrates an output driving a single
series terminated line versus two series terminated lines in
parallel. When taken to its extreme the fanout of the
MPC93R51 clock driver is effectively doubled due to its capa-
bility to drive multiple lines.
Figure 6. Single versus Dual Transmission Lines
14
IN
MPC93R51
OUTPUT
BUFFER
RS = 36
ZO = 50
OutA
14
IN
MPC93R51
OUTPUT
BUFFER
RS = 36
ZO = 50
OutB0
RS = 36
ZO = 50
OutB1
The waveform plots in Figure 7 “Single versus Dual Line
Termination Waveforms” show the simulation results of an out-
put driving a single line versus two lines. In both cases the
drive capability of the MPC93R51 output buffer is more than
sufficient to drive 50
transmission lines on the incident edge.
Note from the delay measurements in the simulations a delta
of only 43ps exists between the two differently loaded outputs.
This suggests that the dual line driving need not be used exclu-
sively to maintain the tight output-to-output skew of the
MPC93R51. The output waveform in Figure 7 “Single versus
Dual Line Termination Waveforms” shows a step in the wave-
form, this step is caused by the impedance mismatch seen
looking into the driver. The parallel combination of the 36
se-
ries resistor plus the output impedance does not match the
parallel combination of the line impedances. The voltage wave
launched down the two lines will equal:
VL = VS ( Z0 ÷ (RS+R0 +Z0))
Z0 = 50 || 50
RS = 36 || 36
R0 = 14
VL = 3.0 ( 25 ÷ (18+17+25)
= 1.31V
At the load end the voltage will double, due to the near unity
reflection coefficient, to 2.6V. It will then increment towards the
quiescent 3.0V in steps separated by one round trip delay (in
this case 4.0ns).
2
F
re
e
sc
a
le
S
e
m
ic
o
n
d
u
c
to
r,
I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
n
c
..
.
相关PDF资料
PDF描述
MPC93R51FA 93R SERIES, PLL BASED CLOCK DRIVER, 9 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQFP32
MPC93R51ACR2 93R SERIES, PLL BASED CLOCK DRIVER, 9 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQFP32
MPC940LFAR2 MPC900 SERIES, LOW SKEW CLOCK DRIVER, 18 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQFP32
MPC940LFA MPC900 SERIES, LOW SKEW CLOCK DRIVER, 18 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQFP32
MPC942PFAR2 942 SERIES, LOW SKEW CLOCK DRIVER, 18 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQFP32
相关代理商/技术参数
参数描述
MPC93R52 制造商:MOTOROLA 制造商全称:Motorola, Inc 功能描述:LOW VOLTAGE 3.3V LVCMOS 1:11 CLOCK GENERATOR
MPC93R52AC 功能描述:时钟发生器及支持产品 FSL 1-11 LVCMOS PLL Clock Generator, pwr RoHS:否 制造商:Silicon Labs 类型:Clock Generators 最大输入频率:14.318 MHz 最大输出频率:166 MHz 输出端数量:16 占空比 - 最大:55 % 工作电源电压:3.3 V 工作电源电流:1 mA 最大工作温度:+ 85 C 安装风格:SMD/SMT 封装 / 箱体:QFN-56
MPC93R52ACR2 功能描述:时钟发生器及支持产品 FSL 1-11 LVCMOS PLL Clock Generator, pwr RoHS:否 制造商:Silicon Labs 类型:Clock Generators 最大输入频率:14.318 MHz 最大输出频率:166 MHz 输出端数量:16 占空比 - 最大:55 % 工作电源电压:3.3 V 工作电源电流:1 mA 最大工作温度:+ 85 C 安装风格:SMD/SMT 封装 / 箱体:QFN-56
MPC93R52FA 功能描述:时钟发生器及支持产品 3.3V 240MHz Clock Generator RoHS:否 制造商:Silicon Labs 类型:Clock Generators 最大输入频率:14.318 MHz 最大输出频率:166 MHz 输出端数量:16 占空比 - 最大:55 % 工作电源电压:3.3 V 工作电源电流:1 mA 最大工作温度:+ 85 C 安装风格:SMD/SMT 封装 / 箱体:QFN-56
MPC93R52FAR2 制造商:Integrated Device Technology Inc 功能描述:Zero Delay PLL Clock Generator Single 32-Pin LQFP T/R 制造商:Integrated Device Technology Inc 功能描述:ZERO DLY PLL CLOCK GEN SGL 32LQFP - Tape and Reel