参数资料
型号: NCP1575DG
厂商: ON Semiconductor
文件页数: 14/16页
文件大小: 0K
描述: IC REG CTRLR BUCK PWM 8-SOIC
产品变化通告: Product Obsolescence 08/Apr/2011
标准包装: 98
PWM 型: 电流/电压模式,V²?
输出数: 1
频率 - 最大: 320kHz
电源电压: 9 V ~ 20 V
降压:
升压:
回扫:
反相:
倍增器:
除法器:
Cuk:
隔离:
工作温度: 0°C ~ 125°C
封装/外壳: 8-SOIC(0.154",3.90mm 宽)
包装: 管件
NCP1575
minus I IN(AVE) . If we ignore the small current variation due
to the output ripple current, we can approximate the input
capacitor current waveform as a square wave. We can then
calculate the RMS input capacitor ripple current:
FET at a given current. Thus, low gate charge and low
R DS(ON) will result in higher efficiency and will reduce
generated heat.
It can be advantageous to use multiple switch FETs to
I 2IN(AVE) ) OUT
IRMS(CIN) +
V
VIN
IOUT per phase * IIN(AVE) 2 * I 2IN(AVE)
reduce power consumption. By placing a number of FETs in
parallel, the effective R DS(ON) is reduced, thus reducing the
ohmic power loss. However, placing FETs in parallel
increases the gate capacitance so that switching losses
The input capacitance must be designed to conduct the
worst case input ripple current. This will require several
capacitors in parallel. In addition to the worst case current,
attention must be paid to the capacitor manufacturer ’s
derating for operation over temperature.
As an example, let us define the input capacitance for a
5 V to 3.3 V conversion at 10 A at an ambient temperature
of 60 ° C. Efficiency of 80% is assumed. Average input
current in the input filter inductor is:
IIN(AVE) + (10 A)(3.3 V 5 V) + 6.6 A
Input capacitor RMS ripple current is then
increase. As long as adding another parallel FET reduces the
ohmic power loss more than the switching losses increase,
there is some advantage to doing so. However, at some point
the law of diminishing returns will take hold, and a marginal
increase in efficiency may not be worth the board area
required to add the extra FET. Additionally, as more FETs
are used, the limited drive capability of the FET driver will
have to charge a larger gate capacitance, resulting in
increased gate voltage rise and fall times. This will affect the
amount of time the FET operates in its ohmic region and will
increase power dissipation.
The following equations can be used to calculate power
6.62 ) 3.3 V
PON(TOP) +
IIN(RMS) +
5V
[(10 A * 6.6 A)2 * 6.6 A2]
dissipation in the switch FETs.
For ohmic power losses due to R DS(ON) :
(RDS(ON)(TOP))(IRMS(TOP))2
(number of topside FETs)
PON(BOTTOM) +
+ 4.74 A
If we consider a Rubycon MBZ series capacitor, the ripple
current rating for a 6.3 V, 1800 nF capacitor is 2000 mA at
100 kHz and 105 ° C. We determine the number of input
capacitors by dividing the ripple current by the
per?capacitor current rating:
RDS(ON)(BOTTOM) IRMS(BOTTOM) 2
number of bottom?side FETs
Note that R DS(ON) increases with temperature. It is good
practice to use the value of R DS(ON) at the FET’s maximum
junction temperature in the calculations shown above.
I 2PK * (IPK)(IRIPPLE) ) D I 2RIPPLE
Number of capacitors + 4.74 A 2.0 A + 2.3
A total of at least 3 capacitors in parallel must be used to
IRMS(TOP) +
3
IRMS(BOTTOM) + I 2PK * (IPKIRIPPLE) )
(1 * D) 2
I RIPPLE
IRIPPLE +
IPEAK + ILOAD ) RIPPLE + OUT ) RIPPLE
meet the input capacitor ripple current requirements.
Output Switch FETs
Output switch FETs must be chosen carefully, since their
properties vary widely from manufacturer to manufacturer.
The NCP1575 system is designed assuming that n?channel
FETs will be used. The FET characteristics of most concern
are the gate charge/gate?source threshold voltage, gate
capacitance, on?resistance, current rating and the thermal
capability of the package.
The onboard FET driver has a limited drive capability. If
the switch FET has a high gate charge, the amount of time
the FET stays in its ohmic region during the turn?on and
turn?off transitions is larger than that of a low gate charge
FET, with the result that the high gate charge FET will
consume more power. Similarly, a low on?resistance FET
will dissipate less power than will a higher on?resistance
3
(VIN * VOUT)(VOUT)
(fOSC)(L)(VIN)
I I I
2 3 2
where:
D = Duty cycle.
For switching power losses:
PD + nCV2(fOSC)
where:
n = number of switch FETs (either top or bottom),
C = FET gate capacitance,
V = maximum gate drive voltage (usually V CC ),
f OSC = switching frequency.
http://onsemi.com
14
相关PDF资料
PDF描述
DS1818R-5/T&R IC ECONRST 3.3V W/PB 5% SOT23-3
DS1818R-20/T&R IC ECONRST 3.3V W/PB 20% SOT23-3
DS1816R-20/T&R IC ECONORST 3.3V O-D 20%SOT23-3
HCC19DRXS CONN EDGECARD 38POS DIP .100 SLD
NCP1575D IC REG CTRLR BUCK PWM 8-SOIC
相关代理商/技术参数
参数描述
NCP1575DR2 功能描述:DC/DC 开关控制器 Low Voltage RoHS:否 制造商:Texas Instruments 输入电压:6 V to 100 V 开关频率: 输出电压:1.215 V to 80 V 输出电流:3.5 A 输出端数量:1 最大工作温度:+ 125 C 安装风格: 封装 / 箱体:CPAK
NCP1575DR2G 功能描述:DC/DC 开关控制器 Low Voltage Synchronous Buck RoHS:否 制造商:Texas Instruments 输入电压:6 V to 100 V 开关频率: 输出电压:1.215 V to 80 V 输出电流:3.5 A 输出端数量:1 最大工作温度:+ 125 C 安装风格: 封装 / 箱体:CPAK
NCP1578MNR2G 功能描述:IC REG DL BCK/LINEAR SYNC 20-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - 线性 + 切换式 系列:- 标准包装:2,500 系列:- 拓扑:降压(降压)同步(3),线性(LDO)(2) 功能:任何功能 输出数:5 频率 - 开关:300kHz 电压/电流 - 输出 1:控制器 电压/电流 - 输出 2:控制器 电压/电流 - 输出 3:控制器 带 LED 驱动器:无 带监控器:无 带序列发生器:是 电源电压:5.6 V ~ 24 V 工作温度:-40°C ~ 85°C 安装类型:* 封装/外壳:* 供应商设备封装:* 包装:*
NCP1579DR2G 功能描述:电压模式 PWM 控制器 BUCK CONTROLLER RoHS:否 制造商:Texas Instruments 输出端数量:1 拓扑结构:Buck 输出电压:34 V 输出电流: 开关频率: 工作电源电压:4.5 V to 5.5 V 电源电流:600 uA 最大工作温度:+ 125 C 最小工作温度:- 40 C 封装 / 箱体:WSON-8 封装:Reel
NCP1580DR2 功能描述:电压模式 PWM 控制器 Low Voltage RoHS:否 制造商:Texas Instruments 输出端数量:1 拓扑结构:Buck 输出电压:34 V 输出电流: 开关频率: 工作电源电压:4.5 V to 5.5 V 电源电流:600 uA 最大工作温度:+ 125 C 最小工作温度:- 40 C 封装 / 箱体:WSON-8 封装:Reel