参数资料
型号: PIC18F66J16-I/PT
厂商: Microchip Technology
文件页数: 82/107页
文件大小: 0K
描述: IC PIC MCU FLASH 48KX16 64TQFP
产品培训模块: Asynchronous Stimulus
PIC18 J Series MCU Overview
8-bit PIC® Microcontroller Portfolio
标准包装: 160
系列: PIC® 18F
核心处理器: PIC
芯体尺寸: 8-位
速度: 48MHz
连通性: I²C,SPI,UART/USART
外围设备: 欠压检测/复位,LVD,POR,PWM,WDT
输入/输出数: 52
程序存储器容量: 96KB(48K x 16)
程序存储器类型: 闪存
RAM 容量: 3930 x 8
电压 - 电源 (Vcc/Vdd): 2 V ~ 3.6 V
数据转换器: A/D 11x10b
振荡器型: 内部
工作温度: -40°C ~ 85°C
封装/外壳: 64-TQFP
包装: 托盘
产品目录页面: 644 (CN2011-ZH PDF)
配用: AC162091-ND - HEADER MPLAB ICD2 18F87J11 64/80
MA180020-ND - MODULE PLUG-IN HPC EXPL 18F87J11
AC164327-ND - MODULE SKT FOR 64TQFP
PIC18F87J11 FAMILY
DS39778E-page 76
2007-2012 Microchip Technology Inc.
6.3
Data Memory Organization
The data memory in PIC18 devices is implemented as
static RAM. Each register in the data memory has a
12-bit address, allowing up to 4096 bytes of data
memory. The memory space is divided into as many as
16 banks that contain 256 bytes each. The
PIC18F87J11 family implements all available banks
and provide 3936 bytes of data memory available to the
user. Figure 6-7 shows the data memory organization
for the devices.
The data memory contains Special Function Registers
(SFRs) and General Purpose Registers (GPRs). The
SFRs are used for control and status of the controller
and peripheral functions, while GPRs are used for data
storage and scratchpad operations in the user’s
application. Any read of an unimplemented location will
read as ‘0’s.
The instruction set and architecture allow operations
across all banks. The entire data memory may be
accessed by Direct, Indirect or Indexed Addressing
modes. Addressing modes are discussed later in this
section.
To ensure that commonly used registers (select SFRs
and select GPRs) can be accessed in a single cycle,
PIC18 devices implement an Access Bank. This is a
256-byte memory space that provides fast access to
select SFRs and the lower portion of GPR Bank 0 with-
provides a detailed description of the Access RAM.
6.3.1
BANK SELECT REGISTER
Large areas of data memory require an efficient
addressing scheme to make rapid access to any
address possible. Ideally, this means that an entire
address does not need to be provided for each read or
write operation. For PIC18 devices, this is accom-
plished with a RAM banking scheme. This divides the
memory space into 16 contiguous banks of 256 bytes.
Depending on the instruction, each location can be
addressed directly by its full 12-bit address, or an 8-bit
low-order address and a 4-bit Bank Pointer.
Most instructions in the PIC18 instruction set make use
of the Bank Pointer, known as the Bank Select Register
(BSR). This SFR holds the 4 Most Significant bits of a
location’s address. The instruction itself includes the
8 Least Significant bits. Only the four lower bits of the
BSR are implemented (BSR<3:0>). The upper four bits
are unused; they will always read ‘0’ and cannot be
written to. The BSR can be loaded directly by using the
MOVLB
instruction.
The value of the BSR indicates the bank in data mem-
ory. The 8 bits in the instruction show the location in the
bank and can be thought of as an offset from the bank’s
lower boundary. The relationship between the BSR’s
value and the bank division in data memory is shown in
Since up to 16 registers may share the same low-order
address, the user must always be careful to ensure that
the proper bank is selected before performing a data
read or write. For example, writing what should be
program data to an 8-bit address of F9h while the BSR
is 0Fh, will end up resetting the Program Counter.
While any bank can be selected, only those banks that
are actually implemented can be read or written to.
Writes to unimplemented banks are ignored, while
reads from unimplemented banks will return ‘0’s. Even
so, the STATUS register will still be affected as if the
operation was successful. The data memory map in
Figure 6-7 indicates which banks are implemented.
In the core PIC18 instruction set, only the MOVFF
instruction fully specifies the 12-bit address of the
source and target registers. This instruction ignores the
BSR completely when it executes. All other instructions
include only the low-order address as an operand and
must use either the BSR or the Access Bank to locate
their target registers.
Note:
The operation of some aspects of data
memory are changed when the PIC18
extended instruction set is enabled. See
for more
information.
相关PDF资料
PDF描述
PIC18LF24J50-I/SS IC PIC MCU FLASH 16K 2V 28-SSOP
PIC18F24J50-I/SS IC PIC MCU FLASH 16K 2V 28-SSOP
PIC24FV16KA301-I/SS MCU 16KB FLASH 2KB RAM 20-SSOP
PIC24FJ32GA002-I/ML IC PIC MCU FLASH 32KB 28QFN
PIC24FJ16MC102-I/SP IC MCU 16BIT 16KB FLASH 28SPDIP
相关代理商/技术参数
参数描述
PIC18F66J16T-I/PT 功能描述:8位微控制器 -MCU 96KB Flash 3936 bytesRAM 51I/O RoHS:否 制造商:Silicon Labs 核心:8051 处理器系列:C8051F39x 数据总线宽度:8 bit 最大时钟频率:50 MHz 程序存储器大小:16 KB 数据 RAM 大小:1 KB 片上 ADC:Yes 工作电源电压:1.8 V to 3.6 V 工作温度范围:- 40 C to + 105 C 封装 / 箱体:QFN-20 安装风格:SMD/SMT
PIC18F66J50-I/PT 功能描述:8位微控制器 -MCU 64KB FLSH 3936Bs RAM USB 2.0 nanoWatt RoHS:否 制造商:Silicon Labs 核心:8051 处理器系列:C8051F39x 数据总线宽度:8 bit 最大时钟频率:50 MHz 程序存储器大小:16 KB 数据 RAM 大小:1 KB 片上 ADC:Yes 工作电源电压:1.8 V to 3.6 V 工作温度范围:- 40 C to + 105 C 封装 / 箱体:QFN-20 安装风格:SMD/SMT
PIC18F66J50T-I/PT 功能描述:8位微控制器 -MCU 64KB FLSH 3936Bs RAM USB 2.0 nanoWatt RoHS:否 制造商:Silicon Labs 核心:8051 处理器系列:C8051F39x 数据总线宽度:8 bit 最大时钟频率:50 MHz 程序存储器大小:16 KB 数据 RAM 大小:1 KB 片上 ADC:Yes 工作电源电压:1.8 V to 3.6 V 工作温度范围:- 40 C to + 105 C 封装 / 箱体:QFN-20 安装风格:SMD/SMT
PIC18F66J55-I/PT 功能描述:8位微控制器 -MCU 96KB FLSH 3936Bs RAM USB 2.0 nanoWatt RoHS:否 制造商:Silicon Labs 核心:8051 处理器系列:C8051F39x 数据总线宽度:8 bit 最大时钟频率:50 MHz 程序存储器大小:16 KB 数据 RAM 大小:1 KB 片上 ADC:Yes 工作电源电压:1.8 V to 3.6 V 工作温度范围:- 40 C to + 105 C 封装 / 箱体:QFN-20 安装风格:SMD/SMT
PIC18F66J55T-I/PT 功能描述:8位微控制器 -MCU 96KB FLSH 3936Bs RAM USB 2.0 nanoWatt RoHS:否 制造商:Silicon Labs 核心:8051 处理器系列:C8051F39x 数据总线宽度:8 bit 最大时钟频率:50 MHz 程序存储器大小:16 KB 数据 RAM 大小:1 KB 片上 ADC:Yes 工作电源电压:1.8 V to 3.6 V 工作温度范围:- 40 C to + 105 C 封装 / 箱体:QFN-20 安装风格:SMD/SMT