参数资料
型号: AD9523BCPZ-REEL7
厂商: Analog Devices Inc
文件页数: 15/60页
文件大小: 0K
描述: IC INTEGER-N CLCK GEN 72LFCSP
标准包装: 400
类型: 时钟/频率发生器,扇出缓冲器(分配)
PLL:
主要目的: 以太网,光纤通道,SONET/SDH
输入: CMOS
输出: HSTL,LVCMOS,LVDS,LVPECL
电路数: 1
比率 - 输入:输出: 2:14
差分 - 输入:输出: 是/是
频率 - 最大: 1GHz
电源电压: 1.71 V ~ 3.465 V
工作温度: -40°C ~ 85°C
安装类型: 表面贴装
封装/外壳: 72-VFQFN 裸露焊盘,CSP
供应商设备封装: 72-LFCSP-VQ(10x10)
包装: 带卷 (TR)
配用: AD9523/PCBZ-ND - BOARD EVAL FOR AD9523
AD9523
Data Sheet
Rev. C | Page 22 of 60
PLL1 Input Dividers
Each reference input feeds a dedicated reference divider block.
The input dividers provide division of the reference frequency
in integer steps from 1 to 1023. They provide the bulk of the
frequency prescaling that is necessary to reduce the reference
frequency to accommodate the bandwidth that is typically
desired for PLL1.
PLL1 Reference Switchover
The reference monitor verifies the presence/absence of the
prescaled REFA and REFB signals (that is, after division by the
input dividers). The status of the reference monitor guides the
activity of the switchover control logic. The AD9523 supports
automatic and manual PLL reference clock switching between
REFA (the REFA and REFA pins) and REFB (the REFB and
REFB pins). This feature supports networking and infrastructure
applications that require redundant references.
There are several configurable modes of reference switchover.
The manual switchover is achieved either via a programming
register setting or by using the REF_SEL pin. The automatic
switchover occurs when REFA disappears and there is a reference
on REFB.
The reference automatic switchover can be set to work as follows:
Nonrevertive: stay on REFB. Switch from REFA to REFB
when REFA disappears, but do not switch back to REFA
if it reappears. If REFB disappears, then go back to REFA.
Revert to REFA. Switch from REFA to REFB when REFA
disappears. Return to REFA from REFB when REFA returns.
See Table 43 for the PLL1 miscellaneous control register bit
settings.
PLL1 Holdover
In the absence of both input references, the device enters
holdover mode. Holdover is a secondary function that is
provided by PLL1. Because PLL1 has an external VCXO
available as a frequency source, it continues to operate in the
absence of the input reference signals. When the device
switches to holdover, the charge pump tristates. The device
continues operating in this mode until a reference signal
becomes available. Then the device exits holdover mode,
and PLL1 resynchronizes with the active reference. In addition
to tristate, the charge pump can be forced to VCC/2 during
holdover (see Table 43, Bit 6 in Register 0x01C).
COMPONENT BLOCKS—OUTPUT PLL (PLL2)
PLL2 General Description
The output PLL (referred to as PLL2) consists of an optional
input reference doubler, phase-frequency detector (PFD),
a partially integrated analog loop filter (see Figure 25), an
integrated voltage-controlled oscillator (VCO), and a feedback
divider. The VCO produces a nominal 3.8 GHz signal with an
output divider that is capable of division ratios of 4 to 11.
The PFD of the output PLL drives a charge pump that increases,
decreases, or holds constant the charge stored on the loop filter
capacitors (both internal and external). The stored charge
results in a voltage that sets the output frequency of the VCO.
The feedback loop of the PLL causes the VCO control voltage to
vary in a way that phase locks the PFD input signals. The gain
of PLL2 is proportional to the current delivered by the charge
pump. The loop filter bandwidth is chosen to reduce noise
contributions from PLL sources that could degrade phase noise
requirements.
The output PLL has a VCO with multiple bands spanning a
range of 3.6 GHz to 4.0 GHz. However, the actual operating
frequency within a particular band depends on the control
voltage that appears on the loop filter capacitor. The control
voltage causes the VCO output frequency to vary linearly within
the selected band. This frequency variability allows the control
loop of the output PLL to synchronize the VCO output signal
with the reference signal applied to the PFD. Typically, the
device automatically selects the appropriate band as part of its
calibration process (invoked via the VCO control register at
Address 0x0F3).
N DIVIDER
TO DIST/
RESYNC
×2
PLL1_OUT
LDO
PLL_1.8V
LDO_PLL2
VDD3_PLL2
LDO_VCO
DIVIDE BY
1, 2, 4, 8, 16
DIVIDE BY
4, 5, 6, ...11
DIVIDE-BY-4
PRESCALER
A/B
COUNTERS
CHARGE PUMP
8 BITS, 3.5A LSB
PFD
RZERO
RPOLE2
CPOLE1
CPOLE2
LF2_EXT_CAP
08439-
023
AD9523
Figure 25. Output PLL (PLL2) Block Diagram
相关PDF资料
PDF描述
PT06A-20-16P CONN PLUG 16 POS STRAIGHT W/PINS
VE-JTW-MX-F3 CONVERTER MOD DC/DC 5.5V 75W
VE-JTW-MX-F2 CONVERTER MOD DC/DC 5.5V 75W
ADN2805ACPZ-RL7 IC CLK/DATA REC 1.25GBPS 32LFCSP
VE-JT0-MX-F4 CONVERTER MOD DC/DC 5V 75W
相关代理商/技术参数
参数描述
AD9524 制造商:AD 制造商全称:Analog Devices 功能描述:Jitter Cleaner and Clock Generator with 6 Differential or 13 LVCMOS Outputs
AD9524/PCBZ 功能描述:BOARD EVAL FOR AD9524 RoHS:是 类别:编程器,开发系统 >> 评估演示板和套件 系列:- 标准包装:1 系列:PSoC® 主要目的:电源管理,热管理 嵌入式:- 已用 IC / 零件:- 主要属性:- 次要属性:- 已供物品:板,CD,电源
AD9524BCPZ 功能描述:IC INTEGER-N CLCK GEN 48LFCSP RoHS:是 类别:集成电路 (IC) >> 时钟/计时 - 专用 系列:- 标准包装:28 系列:- 类型:时钟/频率发生器 PLL:是 主要目的:Intel CPU 服务器 输入:时钟 输出:LVCMOS 电路数:1 比率 - 输入:输出:3:22 差分 - 输入:输出:无/是 频率 - 最大:400MHz 电源电压:3.135 V ~ 3.465 V 工作温度:0°C ~ 85°C 安装类型:表面贴装 封装/外壳:64-TFSOP (0.240",6.10mm 宽) 供应商设备封装:64-TSSOP 包装:管件
AD9524BCPZ-REEL7 功能描述:IC INTEGER-N CLCK GEN 48LFCSP RoHS:是 类别:集成电路 (IC) >> 时钟/计时 - 专用 系列:- 标准包装:28 系列:- 类型:时钟/频率发生器 PLL:是 主要目的:Intel CPU 服务器 输入:时钟 输出:LVCMOS 电路数:1 比率 - 输入:输出:3:22 差分 - 输入:输出:无/是 频率 - 最大:400MHz 电源电压:3.135 V ~ 3.465 V 工作温度:0°C ~ 85°C 安装类型:表面贴装 封装/外壳:64-TFSOP (0.240",6.10mm 宽) 供应商设备封装:64-TSSOP 包装:管件
AD9525 制造商:AD 制造商全称:Analog Devices 功能描述:Low Jitter Clock Generator with Eight LVPECL Outputs