参数资料
型号: ADP1871-0.6-EVALZ
厂商: Analog Devices Inc
文件页数: 27/44页
文件大小: 0K
描述: BOARD EVAL FOR ADP1871-0.6
标准包装: 1
系列: *
P DCR ( LOSS ) ? DCR ? I LOAD + Core Loss
P BODY ( LOSS ) ?
? I LOAD ? V F ? 2
Data Sheet
Diode Conduction Loss
The ADP1870/ADP1871 employ anticross conduction circuitry
that prevents the upper- and lower-side MOSFETs from conducting
current simultaneously. This overlap control is beneficial, avoiding
large current flow that may lead to irreparable damage to the
external components of the power stage. However, this blanking
period comes with the trade-off of a diode conduction loss
occurring immediately after the MOSFETs change states and
continuing well into idle mode. The amount of loss through the
body diode of the lower-side MOSFET during the antioverlap
state is given by the following expression:
t BODY ( LOSS )
t SW
where:
t BODY(LOSS) is the body conduction time (refer to Figure 82 for
dead time periods).
t SW is the period per switching cycle.
V F is the forward drop of the body diode during conduction.
(Refer to the selected external MOSFET data sheet for more
information about the V F parameter.)
ADP1870/ADP1871
application to achieve minimal loss and negligible electromagnetic
interference (EMI).
2
INPUT CAPACITOR SELECTION
The goal in selecting an input capacitor is to reduce or minimize
input voltage ripple and to reduce the high frequency source
impedance, which is essential for achieving predictable loop
stability and transient performance.
The problem with using bulk capacitors, other than their
physical geometries, is their large equivalent series resistance
(ESR) and large equivalent series inductance (ESL). Aluminum
electrolytic capacitors have such high ESR that they cause
undesired input voltage ripple magnitudes and are generally not
effective at high switching frequencies.
If bulk capacitors are to be used, it is recommended that muli-
layered ceramic capacitors (MLCC) be used in parallel due to
their low ESR values. This dramatically reduces the input voltage
ripple amplitude as long as the MLCCs are mounted directly
across the drain of the upper-side MOSFET and the source
80
72
64
56
48
40
32
24
16
1MHz
300kHz
+125°C
+25°C
–40°C
terminal of the lower-side MOSFET (see the Layout
Considerations section). Improper placement and mounting of
these MLCCs may cancel their effectiveness due to stray
inductance and an increase in trace impedance.
V OUT ? ? V IN ? V OUT ?
I CIN , rms ? I LOAD,max ?
V OUT
The maximum input voltage ripple and maximum input capacitor
rms current occur at the end of the duration of 1 ? D while the
upper-side MOSFET is in the off state. The input capacitor rms
current reaches its maximum at Time D. When calculating the
maximum input voltage ripple, account for the ESR of the input
8
2.7
3.4
4.1
4.8
5.5
capacitor as follows:
V REG (V)
Figure 82. Body Diode Conduction Time vs. Low Voltage Input (V REG )
Inductor Loss
During normal conduction mode, further power loss is caused
by the conduction of current through the inductor windings,
which have dc resistance (DCR). Typically, larger sized inductors
have smaller DCR values.
V RIPPLE,max = V RIPP + ( I LOAD,max × ESR )
where:
V RIPP is usually 1% of the minimum voltage input.
I LOAD,max is the maximum load current.
ESR is the equivalent series resistance rating of the input capacitor.
Inserting V RIPPLE,max into the charge balance equation to calculate
the minimum input capacitor requirement gives
The inductor core loss is a result of the eddy currents generated
within the core material. These eddy currents are induced by the
changing flux, which is produced by the current flowing through
C IN,min ?
I LOAD,max
V RIPPLE,max
?
D (1 ? D )
f SW
the windings. The amount of inductor core loss depends on the
or
core material, the flux swing, the frequency, and the core volume.
Ferrite inductors have the lowest core losses, whereas powdered
iron inductors have higher core losses. It is recommended that
C IN,min ?
I LOAD,max
4 f SW V RIPPLE,max
shielded ferrite core material type inductors be used with the
where D = 50%.
ADP1870/ADP1871 for a high current, dc-to-dc switching
Rev. B | Page 27 of 44
相关PDF资料
PDF描述
GCC15DRYI-S13 CONN EDGECARD 30POS .100 EXTEND
CT11BK50-D 11" BLACK 50LB CABLE TIE
RM-2415S CONV DC/DC 0.25W 24VIN 15VOUT
RBC06DCSH-S288 CONN EDGECARD 12POS .100 EXTEND
RM-2412S CONV DC/DC 0.25W 24VIN 12VOUT
相关代理商/技术参数
参数描述
ADP1871-1.0-EVALZ 功能描述:BOARD EVAL FOR ADP1871-1.0 RoHS:是 类别:编程器,开发系统 >> 评估板 - DC/DC 与 AC/DC(离线)SMPS 系列:* 产品培训模块:Obsolescence Mitigation Program 标准包装:1 系列:True Shutdown™ 主要目的:DC/DC,步升 输出及类型:1,非隔离 功率 - 输出:- 输出电压:- 电流 - 输出:1A 输入电压:2.5 V ~ 5.5 V 稳压器拓扑结构:升压 频率 - 开关:3MHz 板类型:完全填充 已供物品:板 已用 IC / 零件:MAX8969
ADP1871ACPZ-0.3-R7 功能描述:IC REG CTRLR BUCK PWM CM 10LFCSP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:2,500 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:500kHz 占空比:96% 电源电压:4 V ~ 36 V 降压:无 升压:是 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:24-WQFN 裸露焊盘 包装:带卷 (TR)
ADP1871ACPZ-0.6-R7 功能描述:IC REG CTRLR BUCK PWM CM 10LFCSP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:2,500 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:500kHz 占空比:96% 电源电压:4 V ~ 36 V 降压:无 升压:是 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:24-WQFN 裸露焊盘 包装:带卷 (TR)
ADP1871ACPZ-1.0-R7 功能描述:IC REG CTRLR BUCK PWM CM 10LFCSP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:2,500 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:500kHz 占空比:96% 电源电压:4 V ~ 36 V 降压:无 升压:是 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:24-WQFN 裸露焊盘 包装:带卷 (TR)
ADP1871ARMZ-0.3-R7 功能描述:IC REG CTRLR BUCK PWM CM 10-MSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:2,500 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:500kHz 占空比:96% 电源电压:4 V ~ 36 V 降压:无 升压:是 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:24-WQFN 裸露焊盘 包装:带卷 (TR)