参数资料
型号: EVAL-AD5290EBZ
厂商: Analog Devices Inc
文件页数: 7/20页
文件大小: 0K
描述: BOARD EVAL FOR AD5290
设计资源: AD5290 Evaluation Tools
标准包装: 1
主要目的: 数字电位器
已用 IC / 零件: AD5290
已供物品:
相关产品: AD5290YRMZ50-R7-ND - IC POT DGTL 50KW 256POS 10-MSOP
AD5290YRMZ10-R7-ND - IC POT DGTL 10KW 256POS 10-MSOP
AD5290YRMZ100-R7-ND - IC POT DGTL 100KW 256POS 10-MSOP
AD5290YRMZ50-ND - IC DGTL POT 50K 256POS 10MSOP
AD5290YRMZ100-ND - IC DGTL POT 100K 256POS 10MSOP
AD5290YRMZ10-ND - IC DGTL POT 10K 256POS 10MSOP
Data Sheet
AD5290
Rev. C | Page 15 of 20
THEORY OF OPERATION
PROGRAMMING THE VARIABLE RESISTOR
Rheostat Operation
The part operates in the rheostat mode when only two termi-
nals are used as a variable resistor. The unused terminal can
be floating or tied to the W terminal as shown in Figure 26.
A
W
B
A
W
B
A
W
B
04716-011
Figure 26. Rheostat Mode Configuration
The nominal resistance between Terminal A and Terminal B,
RAB, is available in 10 k, 50 k, and 100 k with ±30% toler-
ance and has 256 tap points accessed by the wiper terminal. The
8-bit data in the RDAC latch is decoded to select one of the 256
possible settings. Figure 27 shows a simplified RDAC structure.
4RS
2RS
RS
RW
W
RS
2RS
4RS
A
RW
B
8-BIT ADDRESS
DECODER
04716-012
Figure 27. AD5290 Simplified RDAC Circuit.
(RS = Step Resistor, RW = Wiper Resistor)
In order to achieve optimum cost performance, Analog Devices
has patented the RDAC segmentation architecture for all the
digital potentiometers. In particular, the AD5290 employs a
3-stage segmentation approach as shown in Figure 27. As
a result, the general equation determining the digitally
programmed output resistance between the W terminal
and B terminal is
W
AB
WB
R
D
R
×
+
×
=
3
256
)
(
(1)
where:
D is the decimal equivalent of the binary code loaded in
the 8-bit RDAC register from 0 to 255.
RAB is the end-to-end resistance.
RW is one of the wiper resistances contributed by the on
resistance of an internal switch.
The AD5290 wiper switch is designed with the transmission
gate CMOS topology and with the gate voltage derived from
VDD. The wiper resistance, RW, is a function of VDD and
temperature. Contrary to the temperature coefficient of the RAB,
which is only 35 ppm/°C, the temperature coefficient of the wiper
resistance is significantly higher because the wiper resistance
doubles from 25°C to 125°C. As a result, the user must take into
consideration the contribution of RW on the desirable
resistance. On the other hand, the wiper resistance is insensitive
to the tap point potential. As a result, RW remains relatively flat
at a given VDD and temperature at various codes.
Assuming that an ideal 10 k part is used, the wiper’s first
connection starts at the B terminal for the programming code
of 0x00 where SWB is closed. The minimum resistance between
Terminal W and Terminal B is, therefore, generally 150 . The
second connection is the first tap point, which corresponds to
189 (RWB = 1/256 × RAB + 3RW = 39 + 150 ) for code 0x01,
and so on. Each LSB data value increase moves the wiper up the
resistor ladder until the last tap point is reached at 10,110 .
In the zero-scale condition, a finite total wiper resistance of
150 is present. Regardless of which setting the part is oper-
ating in, care should be taken to limit the current between
the A terminal to B terminal, W terminal to A terminal, and
W terminal to B terminal, to the maximum dc current of 5 mA
or pulse current of 20 mA. Otherwise, degradation, or possible
destruction of the internal switch contact, can occur.
Similar to the mechanical potentiometer, the resistance of
the RDAC between the W terminal and the A terminal also
produces a digitally controlled complementary resistance, RWA.
RWA starts at the maximum resistance value and decreases as
the data loaded into the latch increases. The general equation
for this operation is
W
AB
WA
R
D
R
×
+
×
=
3
256
)
(
(2)
相关PDF资料
PDF描述
RCA18DTAN CONN EDGECARD 36POS R/A .125 SLD
RCA18DTAH CONN EDGECARD 36POS R/A .125 SLD
RCA18DTAD CONN EDGECARD 36POS R/A .125 SLD
EVAL-ADCMP582BCPZ BOARD EVALUATION ADCMP582BCP
HSM06DRAI CONN EDGECARD 12POS R/A .156 SLD
相关代理商/技术参数
参数描述
EVAL-AD5292EBZ 功能描述:BOARD EVAL FOR AD5292 RoHS:是 类别:编程器,开发系统 >> 评估演示板和套件 系列:- 标准包装:1 系列:- 主要目的:电信,线路接口单元(LIU) 嵌入式:- 已用 IC / 零件:IDT82V2081 主要属性:T1/J1/E1 LIU 次要属性:- 已供物品:板,电源,线缆,CD 其它名称:82EBV2081
EVAL-AD5360EBZ 功能描述:BOARD EVAL FOR AD5360 RoHS:是 类别:编程器,开发系统 >> 评估板 - 数模转换器 (DAC) 系列:- 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:1 系列:- DAC 的数量:4 位数:12 采样率(每秒):- 数据接口:串行,SPI? 设置时间:3µs DAC 型:电流/电压 工作温度:-40°C ~ 85°C 已供物品:板 已用 IC / 零件:MAX5581
EVAL-AD5360EBZ1 制造商:AD 制造商全称:Analog Devices 功能描述:16-Channel, 16-/14-Bit, Serial Input, Voltage-Output DAC
EVAL-AD5361EBZ 功能描述:BOARD EVAL FOR AD5361 RoHS:是 类别:编程器,开发系统 >> 评估板 - 数模转换器 (DAC) 系列:- 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:1 系列:- DAC 的数量:4 位数:12 采样率(每秒):- 数据接口:串行,SPI? 设置时间:3µs DAC 型:电流/电压 工作温度:-40°C ~ 85°C 已供物品:板 已用 IC / 零件:MAX5581
EVAL-AD5361EBZ1 制造商:AD 制造商全称:Analog Devices 功能描述:16-Channel, 16-/14-Bit, Serial Input, Voltage-Output DAC