参数资料
型号: IDT7034L20PFI
厂商: IDT, Integrated Device Technology Inc
文件页数: 16/19页
文件大小: 0K
描述: IC SRAM 72KBIT 20NS 100TQFP
标准包装: 3
格式 - 存储器: RAM
存储器类型: SRAM - 双端口,异步
存储容量: 72K(4K x 18)
速度: 20ns
接口: 并联
电源电压: 4.5 V ~ 5.5 V
工作温度: -40°C ~ 85°C
封装/外壳: 100-LQFP
供应商设备封装: 100-TQFP(14x14)
包装: 托盘
其它名称: 7034L20PFI
IDT7034S/L
High-Speed 4K x 18 Dual-Port Static RAM
BUSY LOGIC
Industrial and Commercial Temperature Ranges
Busy Logic provides a hardware indication that both ports of the
RAM have accessed the same location at the same time. It also allows
one of the two accesses to proceed and signals the other side that the
RAM is “busy”. The BUSY pin can then be used to stall the access until
the operation on the other side is completed. If a write operation has
MASTER CE
Dual Port
RAM
BUSY (L) BUSY (R)
SLAVE CE
Dual Port
RAM
BUSY (L) BUSY (R)
been attempted from the side that receives a BUSY indication, the
write signal is gated internally to prevent the write from proceeding.
The use of BUSY logic is not required or desirable for all applica-
tions. In some cases it may be useful to logically OR the BUSY outputs
together and use any BUSY indication as an interrupt source to flag the
BUSY (L)
MASTER CE
Dual Port
RAM
BUSY (L) BUSY (R)
SLAVE CE
Dual Port
RAM
BUSY (L) BUSY (R)
BUSY (R)
4089 drw 17
,
event of an illegal or illogical operation. If the write inhibit function of
BUSY logic is not desirable, the BUSY logic can be disabled by placing
the part in slave mode with the M/ S pin. Once in slave mode the BUSY
pin operates solely as a write inhibit input pin. Normal operation can be
programmed by tying the BUSY pins HIGH. If desired, unintended
write operations can be prevented to a port by tying the BUSY pin for
that port LOW.
The BUSY outputs on the IDT7034 RAM in master mode, are push-
pull type outputs and do not require pull up resistors to operate. If these
RAMs are being expanded in depth, then the BUSY indication for the
resulting array requires the use of an external AND gate.
WIDTH EXPANSION WITH BUSY LOGIC
MASTER/SLAVE ARRAYS
When expanding an IDT7034 RAM array in width while using
BUSY logic, one master part is used to decide which side of the RAM
array will receive a BUSY indication, and to output that indication. Any
number of slaves to be addressed in the same address range as the
master, use the BUSY signal as a write inhibit signal. Thus on the
IDT7034 RAM the BUSY pin is an output if the part is used as a master
(M/ S pin = V IH ), and the BUSY pin is an input if the part used as a slave
(M/ S pin = V IL ) as shown in Figure 3.
If two or more master parts were used when expanding in width, a
split decision could result with one master indicating BUSY on one side
of the array and another master indicating BUSY on one other side of
the array. This would inhibit the write operations from one port for part
of a word and inhibit the write operations from the other port for the
other part of the word.
The BUSY arbitration, on a master, is based on the chip enable and
address signals only. It ignores whether an access is a read or write.
In a master/slave array, both address and chip enable must be valid
long enough for a BUSY flag to be output from the master before the
actual write pulse can be initiated with either the R/ W signal or the byte
enables. Failure to observe this timing can result in a glitched internal
write inhibit signal and corrupted data in the slave.
SEMAPHORES
The IDT7034 is an extremely fast Dual-Port 4K x 18 CMOS Static
RAM with an additional 8 address locations dedicated to binary
semaphore flags. These flags allow either processor on the left or right
side of the Dual-Port RAM to claim a privilege over the other processor
for functions defined by the system designer’s software. As an ex-
ample, the semaphore can be used by one processor to inhibit the
Figure 3. Busy and chip enable routing for both width and
depth expansion with IDT7034 RAMs.
other from accessing a portion of the Dual-Port RAM or any other
shared resource.
The Dual-Port RAM features a fast access time, and both ports are
completely independent of each other. This means that the activity on
the left port in no way slows the access time of the right port. Both ports
are identical in function to standard CMOS Static RAM and can be read
from, or written to, at the same time with the only possible conflict
arising from the simultaneous writing of, or a simultaneous READ/
WRITE of, a non-semaphore location. Semaphores are protected
against such ambiguous situations and may be used by the system
program to avoid any conflicts in the non-semaphore portion of the
Dual-Port RAM. These devices have an automatic power-down fea-
ture controlled by CE , the Dual-Port RAM enable, and SEM , the
semaphore enable. The CE and SEM pins control on-chip power down
circuitry that permits the respective port to go into standby mode when
not selected. This is the condition which is shown in Truth Table I where
CE and SEM are both HIGH.
Systems which can best use the IDT7034 contain multiple proces-
sors or controllers and are typically very high-speed systems which are
software controlled or software intensive. These systems can benefit
from a performance increase offered by the IDT7034's hardware
semaphores, which provide a lockout mechanism without requiring
complex programming.
Software handshaking between processors offers the maximum in
system flexibility by permitting shared resources to be allocated in
varying configurations. The IDT7034 does not use its semaphore flags
to control any resources through hardware, thus allowing the system
designer total flexibility in system architecture.
An advantage of using semaphores rather than the more common
methods of hardware arbitration is that wait states are never incurred
in either processor. This can prove to be a major advantage in very
high-speed systems.
HOW THE SEMAPHORE FLAGS WORK
The semaphore logic is a set of eight latches which are indepen-
dent of the Dual-Port RAM. These latches can be used to pass a flag,
or token, from one port to the other to indicate that a shared resource
is in use. The semaphores provide a hardware assist for a use
assignment method called “Token Passing Allocation.” In this method,
16
相关PDF资料
PDF描述
IDT7035L20PFI IC SRAM 144KBIT 20NS 100TQFP
IDT7037L20PFI IC SRAM 576KBIT 20NS 100TQFP
IDT7038L15PFG IC SRAM 1024KBIT 15NS 120TQFP
IDT7052L20G IC SRAM 16KBIT 20NS 108PGA
IDT7054L20G IC SRAM 32KBIT 20NS 108PGA
相关代理商/技术参数
参数描述
IDT7034L20PFI8 功能描述:IC SRAM 72KBIT 20NS 100TQFP RoHS:否 类别:集成电路 (IC) >> 存储器 系列:- 标准包装:72 系列:- 格式 - 存储器:RAM 存储器类型:SRAM - 同步 存储容量:9M(256K x 36) 速度:75ns 接口:并联 电源电压:3.135 V ~ 3.465 V 工作温度:-40°C ~ 85°C 封装/外壳:100-LQFP 供应商设备封装:100-TQFP(14x14) 包装:托盘 其它名称:71V67703S75PFGI
IDT7034S15PF 功能描述:IC SRAM 72KBIT 15NS 100TQFP RoHS:否 类别:集成电路 (IC) >> 存储器 系列:- 标准包装:45 系列:- 格式 - 存储器:RAM 存储器类型:SRAM - 双端口,异步 存储容量:128K(8K x 16) 速度:15ns 接口:并联 电源电压:3 V ~ 3.6 V 工作温度:0°C ~ 70°C 封装/外壳:100-LQFP 供应商设备封装:100-TQFP(14x14) 包装:托盘 其它名称:70V25S15PF
IDT7034S15PF8 功能描述:IC SRAM 72KBIT 15NS 100TQFP RoHS:否 类别:集成电路 (IC) >> 存储器 系列:- 标准包装:72 系列:- 格式 - 存储器:RAM 存储器类型:SRAM - 同步 存储容量:9M(256K x 36) 速度:75ns 接口:并联 电源电压:3.135 V ~ 3.465 V 工作温度:-40°C ~ 85°C 封装/外壳:100-LQFP 供应商设备封装:100-TQFP(14x14) 包装:托盘 其它名称:71V67703S75PFGI
IDT7034S20PF 功能描述:IC SRAM 72KBIT 20NS 100TQFP RoHS:否 类别:集成电路 (IC) >> 存储器 系列:- 标准包装:45 系列:- 格式 - 存储器:RAM 存储器类型:SRAM - 双端口,异步 存储容量:128K(8K x 16) 速度:15ns 接口:并联 电源电压:3 V ~ 3.6 V 工作温度:0°C ~ 70°C 封装/外壳:100-LQFP 供应商设备封装:100-TQFP(14x14) 包装:托盘 其它名称:70V25S15PF
IDT7034S20PF8 功能描述:IC SRAM 72KBIT 20NS 100TQFP RoHS:否 类别:集成电路 (IC) >> 存储器 系列:- 标准包装:72 系列:- 格式 - 存储器:RAM 存储器类型:SRAM - 同步 存储容量:9M(256K x 36) 速度:75ns 接口:并联 电源电压:3.135 V ~ 3.465 V 工作温度:-40°C ~ 85°C 封装/外壳:100-LQFP 供应商设备封装:100-TQFP(14x14) 包装:托盘 其它名称:71V67703S75PFGI