参数资料
型号: ISL6559CBZ-T
厂商: Intersil
文件页数: 7/21页
文件大小: 0K
描述: IC REG CTRLR BUCK PWM VM 28-SOIC
标准包装: 1
PWM 型: 电压模式
输出数: 1
频率 - 最大: 4MHz
占空比: 75%
电源电压: 4.75 V ~ 5.25 V
降压:
升压:
回扫:
反相:
倍增器:
除法器:
Cuk:
隔离:
工作温度: 0°C ~ 70°C
封装/外壳: 28-SOIC(0.295",7.50mm 宽)
包装: 标准包装
产品目录页面: 1243 (CN2011-ZH PDF)
其它名称: ISL6559CBZ-TDKR
ISL6559
To understand the reduction of ripple current amplitude in
the multi-phase circuit, examine the equation representing
an individual channel’s peak-to-peak inductor current.
converter has 11.9A RMS input capacitor current. The
single-phase converter must use an input capacitor bank
with twice the RMS current capacity as the equivalent three-
( V IN – V OUT ) V OUT
I PP = ------------------------------------------------------
L f S V IN
(EQ. 1)
phase converter.
Figures 15, 16 and 17 in the section entitled Input Capacitor
Selection can be used to determine the input-capacitor RMS
I C , PP = ------------------------------------------------------------
In Equation 1, V IN and V OUT are the input and output
voltages respectively, L is the single-channel inductor value,
and f S is the switching frequency.
The output capacitors conduct the ripple component of the
inductor current. In the case of multi-phase converters, the
capacitor current is the sum of the ripple currents from each
of the individual channels. Compare Equation 1 to the
expression for the peak-to-peak current after the summation
of N symmetrically phase-shifted inductor currents in
Equation 2. Peak-to-peak ripple current decreases by an
amount proportional to the number of channels. Output-
voltage ripple is a function of capacitance, capacitor
equivalent series resistance (ESR), and inductor ripple
current. Reducing the inductor ripple current allows the
designer to use fewer or less costly output capacitors.
( V IN – N V OUT ) V OUT (EQ. 2)
L f S V IN
Another benefit of interleaving is to reduce input ripple
current. Input capacitance is determined in part by the
maximum input ripple current. Multi-phase topologies can
improve overall system cost and size by lowering input ripple
current and allowing the designer to reduce the cost of input
capacitance. The example in Figure 2 illustrates input
currents from a three-phase converter combining to reduce
the total input ripple current.
INPUT-CAPACITOR CURRENT, 10A/DIV
CHANNEL 3
INPUT CURRENT
10A/DIV
CHANNEL 2
INPUT CURRENT
10A/DIV
CHANNEL 1
INPUT CURRENT
10A/DIV
1 μ s/DIV
FIGURE 2. CHANNEL INPUT CURRENTS AND INPUT-
CAPACITOR RMS CURRENT FOR 3-PHASE
CONVERTER
The converter depicted in Figure 2 delivers 36A to a 1.5V
load from a 12V input. The RMS input capacitor current is
5.9A. Compare this to a single-phase converter also
stepping down 12V to 1.5V at 36A. The single-phase
7
current based on load current, duty cycle, and the number of
channels. They are provided as aids in determining the
optimal input capacitor solution. Figure 18 shows the single
phase input-capacitor RMS current for comparison.
PWM Operation
The timing of each converter leg is set by the number of
active channels. The default channel setting for the ISL6559
is four. One switching cycle is defined as the time between
PWM1 pulse termination signals. The pulse termination
signal is an internally generated clock signal which triggers
the falling edge of PWM1. The cycle time of the pulse
termination signal is the inverse of the switching frequency
set by the resistor between the FS/DIS pin and ground. Each
cycle begins when the clock signal commands the channel-1
PWM output to go low. The PWM1 transition signals the
channel-1 MOSFET driver to turn off the channel-1 upper
MOSFET and turn on the channel-1 synchronous MOSFET.
In the default channel configuration, the PWM2 pulse
terminates 1/4 of a cycle after PWM1. The PWM 3 output
follows another 1/4 of a cycle after PWM2. PWM4 terminates
another 1/4 of a cycle after PWM3.
If PWM3 is connected to VCC, then two channel operation is
selected and the PWM2 pulse terminates 1/2 of a cycle later.
Connecting PWM4 to VCC selects three channel operation
and the pulse-termination times are spaced in 1/3 cycle
increments.
Once a PWM signal transitions low, it is held low for a
minimum of 1/4 cycle. This forced off time is required to
ensure an accurate current sample. Current sensing is
described in the next section. After the forced off time
expires, the PWM output is enabled. The PWM output state
is driven by the position of the error amplifier output signal,
V COMP , minus the current correction signal relative to the
sawtooth ramp as illustrated in Figure 1. When the modified
V COMP voltage crosses the sawtooth ramp, the PWM output
transitions high. The MOSFET driver detects the change in
state of the PWM signal and turns off the synchronous
MOSFET and turns on the upper MOSFET. The PWM signal
will remain high until the pulse termination signal marks the
beginning of the next cycle by triggering the PWM signal low.
Current Sensing
During the forced off time following a PWM transition low, the
controller senses channel load current by sampling the
voltage across the lower MOSFET r DS(ON) , see Figure 3. A
ground-referenced amplifier, internal to the ISL6559,
connects to the PHASE node through a resistor, R ISEN . The
voltage across R ISEN is equivalent to the voltage drop
FN9084.8
December 29, 2004
相关PDF资料
PDF描述
ISL6561CR-T IC CTRLR PWM MULTIPHASE 40-QFN
ISL6563IR-T IC CTRLR PWM MULTIPHASE 24-QFN
ISL6564AIRZ IC REG CTRLR BUCK PWM VM 40-QFN
ISL6564IR-T IC REG CTRLR BUCK PWM VM 40-QFN
ISL6565BCV-T IC REG CTRLR BUCK PWM VM 28TSSOP
相关代理商/技术参数
参数描述
ISL6559CR 功能描述:IC REG CTRLR BUCK PWM VM 32-QFN RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:4,000 系列:- PWM 型:电压模式 输出数:1 频率 - 最大:1.5MHz 占空比:66.7% 电源电压:4.75 V ~ 5.25 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 85°C 封装/外壳:40-VFQFN 裸露焊盘 包装:带卷 (TR)
ISL6559CR-T 功能描述:IC REG CTRLR BUCK PWM VM 32-QFN RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:4,000 系列:- PWM 型:电压模式 输出数:1 频率 - 最大:1.5MHz 占空比:66.7% 电源电压:4.75 V ~ 5.25 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 85°C 封装/外壳:40-VFQFN 裸露焊盘 包装:带卷 (TR)
ISL6559CRZ 功能描述:电流型 PWM 控制器 2 TO 4 PHS BUCK CNTRLR 32L 5X5 MLFP RoHS:否 制造商:Texas Instruments 开关频率:27 KHz 上升时间: 下降时间: 工作电源电压:6 V to 15 V 工作电源电流:1.5 mA 输出端数量:1 最大工作温度:+ 105 C 安装风格:SMD/SMT 封装 / 箱体:TSSOP-14
ISL6559CRZR5265 功能描述:IC REG CTRLR BUCK PWM VM 32-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:2,500 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:275kHz 占空比:50% 电源电压:18 V ~ 110 V 降压:无 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:是 工作温度:-40°C ~ 85°C 封装/外壳:8-SOIC(0.154",3.90mm 宽) 包装:带卷 (TR)
ISL6559CRZ-T 功能描述:电流型 PWM 控制器 2 TO 4 PHS BUCK CNTRLR 32L 5X5 MLFP RoHS:否 制造商:Texas Instruments 开关频率:27 KHz 上升时间: 下降时间: 工作电源电压:6 V to 15 V 工作电源电流:1.5 mA 输出端数量:1 最大工作温度:+ 105 C 安装风格:SMD/SMT 封装 / 箱体:TSSOP-14