参数资料
型号: ISL6566CRZ-T
厂商: Intersil
文件页数: 24/29页
文件大小: 0K
描述: IC CTLR PWM BUCK 3PHASE 40-QFN
标准包装: 1
应用: 控制器,Intel VRM9,VRM10,AMD Hammer 应用
输入电压: 3 V ~ 12 V
输出数: 1
输出电压: 0.8 V ~ 1.6 V
工作温度: 0°C ~ 70°C
安装类型: 表面贴装
封装/外壳: 40-VFQFN 裸露焊盘
供应商设备封装: 40-QFN(6x6)
包装: 标准包装
其它名称: ISL6566CRZ-TDKR
ISL6566
------------------- > f 0
Case 1:
2 π f 0 V pp LC
R C = R FB ------------------------------------
0.66V
0.66V IN
2 π V PP R FB f 0
Fortunately, there is a simple approximation that comes very
close to an optimal solution. Treating the system as though it
were a voltage-mode regulator, by compensating the L-C poles
and the ESR zero of the voltage mode approximation, yields a
solution that is always stable with very close to ideal transient
performance.
Select a target bandwidth for the compensated system, f 0 . The
target bandwidth must be large enough to assure adequate
transient performance, but smaller than 1/3 of the per-channel
switching frequency. The values of the compensation
components depend on the relationships of f 0 to the L-C pole
frequency and the ESR zero frequency. For each of the
following three, there is a separate set of equations for the
compensation components.
1
2 π LC
IN
C C = ------------------------------------
frequency capacitor of between 22pF and 150pF in case any
leading edge jitter problem is noted.
Output Filter Design
The output inductors and the output capacitor bank together to
form a low-pass filter responsible for smoothing the pulsating
voltage at the phase nodes. The output filter also must provide
the transient energy until the regulator can respond. Because it
has a low bandwidth compared to the switching frequency, the
output filter limits the system transient response. The output
capacitors must supply or sink load current while the current in
the output inductors increases or decreases to meet the
demand.
In high-speed converters, the output capacitor bank is usually
the most costly (and often the largest) part of the circuit. Output
filter design begins with minimizing the cost of this part of the
circuit. The critical load parameters in choosing the output
capacitors are the maximum size of the load step, ? I, the load-
current slew rate, di/dt, and the maximum allowable output-
voltage deviation under transient loading, ? V MAX . Capacitors
are characterized according to their capacitance, ESR, and
ESL (equivalent series inductance).
------------------- ≤ f 0 < ------------------------------
V PP ( 2 π ) 2 f 02 LC
R C = R FB --------------------------------------------
0.66 V
C C = -------------------------------------------------------------
PP R FB LC
( 2 π ) 2 f 2 V
f 0 > ------------------------------
0.66 V IN ( ESR )
? V ≈ ( ESL ) ----- + ( ESR ) ? I
Case 2:
Case 3:
1 1
2 π LC 2 π C ( ESR )
IN
0.66V IN
0
1
2 π C ( ESR )
2 π f 0 V pp L
R C = R FB ------------------------------------------
(EQ. 29)
At the beginning of the load transient, the output capacitors
supply all of the transient current. The output voltage will initially
deviate by an amount approximated by the voltage drop across
the ESL. As the load current increases, the voltage drop across
the ESR increases linearly until the load current reaches its final
value. The capacitors selected must have sufficiently low ESL
and ESR so that the total output-voltage deviation is less than
the allowable maximum. Neglecting the contribution of inductor
current and regulator response, the output voltage initially
deviates by an amount
di (EQ. 30)
dt
0.66V IN ( ESR ) C
2 π V PP R FB f 0 L
IN – N V OUT V
? V ?
? ? OUT
L ≥ ( ESR ) ------------------------------------------------------------
C C = -------------------------------------------------
In Equations 29, L is the per-channel filter inductance divided
by the number of active channels; C is the sum total of all
output capacitors; ESR is the equivalent series resistance of
the bulk output filter capacitance; and V PP is the peak-to-peak
sawtooth signal amplitude as described in the Electrical
Specifications .
Once selected, the compensation values in Equations 29
assure a stable converter with reasonable transient
performance. In most cases, transient performance can be
improved by making adjustments to R C . Slowly increase the
value of R C while observing the transient performance on an
oscilloscope until no further improvement is noted. Normally,
C C will not need adjustment. Keep the value of C C from
Equations 29 unless some performance issue is noted.
The optional capacitor C 2 , is sometimes needed to bypass
noise away from the PWM comparator (see Figure 20). Keep a
position available for C 2 , and be prepared to install a high-
24
The filter capacitor must have sufficiently low ESL and ESR so
that ? V < ? V MAX .
Most capacitor solutions rely on a mixture of high frequency
capacitors with relatively low capacitance in combination with
bulk capacitors having high capacitance but limited high-
frequency performance. Minimizing the ESL of the high-
frequency capacitors allows them to support the output voltage
as the current increases. Minimizing the ESR of the bulk
capacitors allows them to supply the increased current with less
output voltage deviation.
The ESR of the bulk capacitors also creates the majority of the
output-voltage ripple. As the bulk capacitors sink and source
the inductor ac ripple current (see Interleaving and Equation 2),
a voltage develops across the bulk capacitor ESR equal to
I C,PP (ESR). Thus, once the output capacitors are selected, the
maximum allowable ripple voltage, V PP(MAX) , determines the
lower limit on the inductance.
(EQ. 31)
f S V IN V PP ( MAX )
FN9178.4
March 9, 2006
相关PDF资料
PDF描述
ISL6567CRZ IC REG CTRLR BUCK PWM VM 24-QFN
ISL6568CRZ-T IC CTLR PWM BUCK 2PHASE 32-QFN
ISL6569ACR-T IC REG CTRLR BUCK PWM 32-QFN
ISL6569CR-T IC REG CTRLR DIVIDER PWM 32-QFN
ISL6571CRZ IC MOSF DRVR/SYNC SW COMPL 68QFN
相关代理商/技术参数
参数描述
ISL6566CRZ-TR5184 功能描述:IC CTRLR PWM 3PHASE BUCK 40-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - 专用型 系列:- 标准包装:2,000 系列:- 应用:控制器,DSP 输入电压:4.5 V ~ 25 V 输出数:2 输出电压:最低可调至 1.2V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:30-TFSOP(0.173",4.40mm 宽) 供应商设备封装:30-TSSOP 包装:带卷 (TR)
ISL6566EVAL1 功能描述:EVAL BOARD 1 FOR ISL6566 RoHS:否 类别:编程器,开发系统 >> 评估板 - 线性稳压器 (LDO) 系列:* 产品变化通告:1Q2012 Discontinuation 30/Mar/2012 设计资源:NCP590MNDPTAGEVB Gerber Files 标准包装:1 系列:- 每 IC 通道数:2 - 双 输出电压:1.8V,2.8V 电流 - 输出:300mA 输入电压:2.1 ~ 5.5 V 稳压器类型:正,固定式 工作温度:-40°C ~ 85°C 板类型:完全填充 已供物品:板 已用 IC / 零件:NCP590MNDP 其它名称:NCP590MNDPTAGEVB-NDNCP590MNDPTAGEVBOS
ISL6566IR 功能描述:IC CTRLR PWM BUCK 3PHASE 40-QFN RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - 专用型 系列:- 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:2,000 系列:- 应用:电源,ICERA E400,E450 输入电压:4.1 V ~ 5.5 V 输出数:10 输出电压:可编程 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:42-WFBGA,WLCSP 供应商设备封装:42-WLP 包装:带卷 (TR)
ISL6566IR-T 功能描述:IC CTRLR PWM BUCK 3PHASE 40-QFN RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - 专用型 系列:- 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:2,000 系列:- 应用:电源,ICERA E400,E450 输入电压:4.1 V ~ 5.5 V 输出数:10 输出电压:可编程 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:42-WFBGA,WLCSP 供应商设备封装:42-WLP 包装:带卷 (TR)
ISL6566IRZ 功能描述:IC CTRLR PWM BUCK 3PHASE 40-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - 专用型 系列:- 标准包装:43 系列:- 应用:控制器,Intel VR11 输入电压:5 V ~ 12 V 输出数:1 输出电压:0.5 V ~ 1.6 V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:48-VFQFN 裸露焊盘 供应商设备封装:48-QFN(7x7) 包装:管件