参数资料
型号: LTC1753CSW#PBF
厂商: Linear Technology
文件页数: 15/24页
文件大小: 0K
描述: IC SW REG CNTRLR PENT III 20SOIC
标准包装: 38
应用: 控制器,Intel Pentium? III
输入电压: 5V
输出数: 1
输出电压: 1.3 V ~ 3.5 V
工作温度: 0°C ~ 70°C
安装类型: 表面贴装
封装/外壳: 20-SOIC(0.295",7.50mm 宽)
供应商设备封装: 20-SOIC
包装: 管件
LTC1753
APPLICATIO S I FOR ATIO
in the R DS(ON) calculations will generally decrease MOSFET
cost and circuit efficiency while increasing MOSFET heat
sink requirements.
I RIPPLE =
( V IN ? V OUT )( V OUT )
( f OSC )( L O )( V IN )
( )( ) = 2 A P-P
( V IN OUT ) = 1 . 83
μ s
11 . 2 A +
= 12 . 2 A
Inductor Selection
The inductor is often the largest component in the LTC1753
design and should be chosen carefully. Inductor value and
type should be chosen based on output slew rate require-
ments, output ripple requirements and expected peak
current. Inductor value is primarily controlled by the
required current slew rate. The maximum rate of rise of
current in the inductor is set by its value, the input-to-
output voltage differential and the maximum duty cycle of
the LTC1753. In a typical 5V input, 2.8V output applica-
tion, the maximum current slew rate will be:
? V A
DC MAX
L L
where L is the inductor value in μ H. With proper frequency
compensation, the combination of the inductor and output
capacitor will determine the transient recovery time. In
general, a smaller value inductor will improve transient
response at the expense of increased output ripple voltage
and inductor core saturation rating. A 2 μ H inductor would
have a 0.9A/ μ s rise time in this application, resulting in a
5.5 μ s delay in responding to a 5A load current step. During
this 5.5 μ s, the difference between the inductor current and
the output current must be made up by the output capaci-
tor, causing a temporary voltage droop at the output. To
minimize this effect, the inductor value should usually be
in the 1 μ H to 5 μ H range for most typical 5V input LTC1753
circuits. To optimize performance, different combinations
of input and output voltages and expected loads may
require different inductor values.
Once the required value is known, the inductor core type
can be chosen based on peak current and efficiency
requirements. Peak current in the inductor will be equal to
the maximum output load current plus half of the peak-to-
peak inductor ripple current. Ripple current is set by the
inductor value, the input and output voltage and the
operating frequency. The ripple current is approximately
equal to:
f OSC = LTC1753 oscillator frequency = 300kHz
L O = Inductor value
Solving this equation with our typical 5V to 2.8V applica-
tion with a 2 μ H inductor, we get:
2 . 2 0 . 56
( 300 kHz )( 2 μ H )
Peak inductor current at 11.2A load:
2A
2
The ripple current should generally be between 10% and
40% of the output current. The inductor must be able to
withstand this peak current without saturating, and the
copper resistance in the winding should be kept as low as
possible to minimize resistive power loss. Note that in
circuits not employing the current limit function, the
current in the inductor may rise above this maximum
under short circuit or fault conditions; the inductor should
be sized accordingly to withstand this additional current.
Inductors with gradual saturation characteristics are often
the best choice.
Input and Output Capacitors
A typical LTC1753 design puts significant demands on
both the input and the output capacitors. During constant
load operation, a buck converter like the LTC1753 draws
square waves of current from the input supply at the
switching frequency. The peak current value is equal to the
output load current plus 1/2 peak-to-peak ripple current,
and the minimum value is zero. Most of this current is
supplied by the input bypass capacitor. The resulting RMS
current flow in the input capacitor will heat it up, causing
premature capacitor failure in extreme cases. Maximum
RMS current occurs with 50% PWM duty cycle, giving an
RMS current value equal to I OUT /2. A low ESR input
capacitor with an adequate ripple current rating must be
used to ensure reliable operation.
1753fa
15
相关PDF资料
PDF描述
X5083S8 IC CPU SUPRV 8K EE RST LO 8SOIC
RBC31DRTF-S13 CONN EDGECARD 62POS .100 EXTEND
ESC22DRAS-S734 CONN EDGECARD 44POS .100 R/A PCB
VE-J5J-EZ-B1 CONVERTER MOD DC/DC 36V 25W
LTC3450EUD#TR IC CONV PS TRIPLE TFT/LCD 16QFN
相关代理商/技术参数
参数描述
LTC1754ES6-3.3 制造商:Linear Technology 功能描述:Charge Pump STPUP 3.3V 40mA 6-Pin TSOT-23
LTC1754ES6-3.3#PBF 制造商:Linear Technology 功能描述:Charge Pump STPUP 3.3V 40mA 6-Pin TSOT-23
LTC1754ES6-3.3#TR 功能描述:IC REG SWITCHED CAP 3.3V SOT23-6 RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 标准包装:500 系列:- 类型:切换式电容器(充电泵),反相 输出类型:固定 输出数:1 输出电压:-3V 输入电压:2.3 V ~ 5.5 V PWM 型:Burst Mode? 频率 - 开关:900kHz 电流 - 输出:100mA 同步整流器:无 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:SOT-23-6 细型,TSOT-23-6 包装:带卷 (TR) 供应商设备封装:TSOT-23-6 其它名称:LTC1983ES6-3#TRMTR
LTC1754ES6-3.3#TRM 功能描述:IC REG SWITCHED CAP 3.3V SOT23-6 RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 标准包装:500 系列:- 类型:切换式电容器(充电泵),反相 输出类型:固定 输出数:1 输出电压:-3V 输入电压:2.3 V ~ 5.5 V PWM 型:Burst Mode? 频率 - 开关:900kHz 电流 - 输出:100mA 同步整流器:无 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:SOT-23-6 细型,TSOT-23-6 包装:带卷 (TR) 供应商设备封装:TSOT-23-6 其它名称:LTC1983ES6-3#TRMTR
LTC1754ES6-3.3#TRMPBF 功能描述:IC REG SWITCHED CAP 3.3V SOT23-6 RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 开关稳压器 系列:- 标准包装:500 系列:- 类型:切换式电容器(充电泵),反相 输出类型:固定 输出数:1 输出电压:-3V 输入电压:2.3 V ~ 5.5 V PWM 型:Burst Mode? 频率 - 开关:900kHz 电流 - 输出:100mA 同步整流器:无 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:SOT-23-6 细型,TSOT-23-6 包装:带卷 (TR) 供应商设备封装:TSOT-23-6 其它名称:LTC1983ES6-3#TRMTR