参数资料
型号: LTC3707IGN#TRPBF
厂商: Linear Technology
文件页数: 14/32页
文件大小: 0K
描述: IC REG CTRLR BUCK PWM CM 28-SSOP
标准包装: 2,500
系列: PolyPhase®
PWM 型: 电流模式
输出数: 2
频率 - 最大: 360kHz
占空比: 99.4%
电源电压: 4.5 V ~ 28 V
降压:
升压:
回扫:
反相:
倍增器:
除法器:
Cuk:
隔离:
工作温度: -40°C ~ 85°C
封装/外壳: 28-SSOP(0.154",3.90mm 宽)
包装: 带卷 (TR)
LTC3707
APPLICATIONS INFORMATION
Selection of Operating Frequency
The LTC3707 uses a constant frequency architecture with
the frequency determined by an internal oscillator capacitor.
This internal capacitor is charged by a ?xed current plus
an additional current that is proportional to the voltage
applied to the FREQSET pin.
A graph for the voltage applied to the FREQSET pin vs
frequency is given in Figure 5. As the operating frequency
is increased the gate charge losses will be higher, reducing
ef?ciency (see Ef?ciency Considerations). The maximum
switching frequency is approximately 310kHz.
2.5
2.0
Accepting larger values of Δ I L allows the use of low
inductances, but results in higher output voltage ripple
and greater core losses. A reasonable starting point for
setting ripple current is Δ I = 30% ? I OUT(MAX) or higher for
good load transient response and suf?cient ripple current
signal in the current loop. Remember, the maximum Δ I L
occurs at the maximum input voltage.
The inductor value also has secondary effects. The tran-
sition to Burst Mode operation begins when the average
inductor current required results in a peak current below
25% of the current limit determined by R SENSE . Lower
inductor values (higher Δ I L ) will cause this to occur at
lower load currents, which can cause a dip in ef?ciency in
the upper range of low current operation. In Burst Mode
operation, lower inductance values will cause the burst
frequency to decrease.
1.5
Inductor Core Selection
1.0
Once the value for L is known, the type of inductor must
0.5
be selected. High ef?ciency converters generally cannot
afford the core loss found in low cost powdered iron cores,
0
120
170 220 270
OPERATING FREQUENCY (kHz)
320
forcing the use of more expensive ferrite, molypermalloy,
or Kool Mμ ? cores. Actual core loss is independent of core
3707 F05
Figure 5. FREQSET Pin Voltage vs Frequency
Inductor Value Calculation
The operating frequency and inductor selection are inter-
related in that higher operating frequencies allow the use
of smaller inductor and capacitor values. So why would
anyone ever choose to operate at lower frequencies with
larger components? The answer is ef?ciency. A higher
frequency generally results in lower ef?ciency because
of MOSFET gate charge losses. In addition to this basic
trade-off, the effect of inductor value on ripple current and
low current operation must also be considered.
The inductor value has a direct effect on ripple current.
The inductor ripple current Δ I L decreases with higher
inductance or frequency and increases with higher V IN :
size for a ?xed inductor value, but it is very dependent
on inductance selected. As inductance increases, core
losses go down. Unfortunately, increased inductance
requires more turns of wire and therefore copper losses
will increase.
Ferrite designs have very low core loss and are preferred
at high switching frequencies, so design goals can con-
centrate on copper loss and preventing saturation. Ferrite
core material saturates “hard,” which means that induc-
tance collapses abruptly when the peak design current is
exceeded. This results in an abrupt increase in inductor
ripple current and consequent output voltage ripple. Do
not allow the core to saturate!
Molypermalloy (from Magnetics, Inc.) is a very good, low
loss core material for toroids, but it is more expensive
than ferrite. A reasonable compromise from the same
V OUT ? 1– OUT ?
ΔI L =
1
(f)(L)
? V ?
? V IN ?
manufacturer is Kool Mμ. Toroids are very space ef?cient,
especially when you can use several layers of wire. Because
they generally lack a bobbin, mounting is more dif?cult.
3707fb
14
相关PDF资料
PDF描述
LTC3708EUH#PBF IC REG CTRLR BUCK PWM CM 32-QFN
LTC3709EG#TRPBF IC REG CTRLR BUCK PWM CM 36-SSOP
LTC3711EGN#TR IC REG CTRLR BUCK PWM CM 24-SSOP
LTC3713EG#TR IC REG CTRLR BUCK PWM CM 24-SSOP
LTC3714EG IC STP-DWN CNTRLR W/OPAMP 28SSOP
相关代理商/技术参数
参数描述
LTC3708EUH 功能描述:IC REG CTRLR BUCK PWM CM 32-QFN RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:PolyPhase® 标准包装:4,500 系列:PowerWise® PWM 型:控制器 输出数:1 频率 - 最大:1MHz 占空比:95% 电源电压:2.8 V ~ 5.5 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:6-WDFN 裸露焊盘 包装:带卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名称:LM1771SSDX
LTC3708EUH#PBF 功能描述:IC REG CTRLR BUCK PWM CM 32-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:PolyPhase® 特色产品:LM3753/54 Scalable 2-Phase Synchronous Buck Controllers 标准包装:1 系列:PowerWise® PWM 型:电压模式 输出数:1 频率 - 最大:1MHz 占空比:81% 电源电压:4.5 V ~ 18 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-5°C ~ 125°C 封装/外壳:32-WFQFN 裸露焊盘 包装:Digi-Reel® 产品目录页面:1303 (CN2011-ZH PDF) 其它名称:LM3754SQDKR
LTC3708EUH#TR 功能描述:IC REG CTRLR BUCK PWM CM 32-QFN RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:PolyPhase® 标准包装:4,500 系列:PowerWise® PWM 型:控制器 输出数:1 频率 - 最大:1MHz 占空比:95% 电源电压:2.8 V ~ 5.5 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:6-WDFN 裸露焊盘 包装:带卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名称:LM1771SSDX
LTC3708EUH#TRPBF 功能描述:IC REG CTRLR BUCK PWM CM 32-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:PolyPhase® 标准包装:4,500 系列:PowerWise® PWM 型:控制器 输出数:1 频率 - 最大:1MHz 占空比:95% 电源电压:2.8 V ~ 5.5 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:6-WDFN 裸露焊盘 包装:带卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名称:LM1771SSDX
LTC3708EUHPBF 制造商:Linear Technology 功能描述:LTC3708 dual SD tracking PS controller