参数资料
型号: LTC3823EUH
厂商: LINEAR TECHNOLOGY CORP
元件分类: 稳压器
英文描述: 4 A SWITCHING CONTROLLER, 200 kHz SWITCHING FREQ-MAX, PQCC32
封装: 5 X 5 MM, PLASTIC, MO-220WHHD, QFN-32
文件页数: 6/24页
文件大小: 345K
代理商: LTC3823EUH
LTC3823
3823fb
does not exceed a specified maximum, the inductance
should be chosen according to:
L
V
f I
V
OUT
L MAX
OUT
IN MAX
=
Δ (
)
(
)
1
Once the value for L is known, the type of inductor must
be selected. high efficiency converters generally cannot
afford the core loss found in low cost powdered iron cores,
forcing the use of more expensive ferrite, molypermalloy
or Kool M cores. A variety of inductors designed for
high current, low voltage applications are available from
manufacturers such as Sumida, Panasonic, Coiltronics,
Coilcraft and Toko.
Schottky Diode D1 Selection
The Schottky diode D1 shown in Figure 12 conducts dur-
ing the dead time between the conduction of the power
MOSFET switches. It is intended to prevent the body diode
of the bottom MOSFET from turning on and storing charge
during the dead time, which can cause a modest (about
1%) efficiency loss. The diode can be rated for about one
half to one fifth of the full load current since it is on for
only a fraction of the duty cycle. In order for the diode
to be effective, the inductance between it and the bottom
MOSFET must be as small as possible, mandating that
these components be placed adjacently. The diode can
be omitted if the efficiency loss is tolerable.
CIN and COUT Selection
The input capacitance CIN is required to filter the square
wavecurrentatthedrainofthetopMOSFET.UsealowESR
capacitor sized to handle the maximum RMS current.
I
V
RMS
OUT MAX
OUT
IN
OUT
(
)
– 1
This formula has a maximum at VIN = 2VOUT, where
IRMS = IOUT(MAX)/2. This simple worst-case condition is
commonly used for design because even significant de-
viations do not offer much relief. Note that ripple current
ratings from capacitor manufacturers are often based on
only 2000 hours of life which makes it advisable to derate
the capacitor.
The selection of COUT is primarily determined by the
ESR required to minimize voltage ripple and load step
transients. The output ripple VOUT is approximately
bounded by:
Δ
≤ Δ
+
V
I ESR
fC
OUT
L
OUT
1
8
Since
ΔIL increases with input voltage, the output ripple
is highest at maximum input voltage. Typically, once the
ESR requirement is satisfied, the capacitance is adequate
for filtering and has the necessary RMS current rating.
Multiple capacitors placed in parallel may be needed to
meet the ESR and RMS current handling requirements.
Dry tantalum, special polymer, aluminum electrolytic and
ceramic capacitors are all available in surface mount pack-
ages. Special polymer capacitors offer very low ESR but
have lower capacitance density than other types. Tantalum
capacitors have the highest capacitance density but it is
important to only use types that have been surge tested
foruseinswitchingpowersupplies.Aluminumelectrolytic
capacitors have significantly higher ESR, but can be used
in cost-sensitive applications providing that consideration
is given to ripple current ratings and long term reliability.
Ceramic capacitors have excellent low ESR characteris-
tics but can have a high voltage coefficient and audible
piezoelectriceffects.ThehighQofceramiccapacitorswith
trace inductance can also lead to significant ringing. When
used as input capacitors, care must be taken to ensure that
ringing from inrush currents and switching does not pose
an overvoltage hazard to the power switches and control-
ler. To dampen input voltage transients, add a small 5F
to 50F aluminum electrolytic capacitor with an ESR in
the range of 0.5
Ω to 2Ω. high performance through-hole
capacitors may also be used, but an additional ceramic
capacitor in parallel is recommended to reduce the effect
of their lead inductance.
Top MOSFET Driver Supply (CB, DB)
AnexternalbootstrapcapacitorCBconnectedtotheBOOST
pin supplies the gate drive voltage for the topside MOSFET.
This capacitor is charged through diode DB from INTVCC
when the switch node is low. When the top MOSFET turns
applications information
相关PDF资料
PDF描述
LTC3823EGN 4 A SWITCHING CONTROLLER, 200 kHz SWITCHING FREQ-MAX, PDSO28
LTC3823EUH#TR 4 A SWITCHING CONTROLLER, 200 kHz SWITCHING FREQ-MAX, PQCC32
LTC3823EGN#TR 4 A SWITCHING CONTROLLER, 200 kHz SWITCHING FREQ-MAX, PDSO28
LTC3827IUH 3 A DUAL SWITCHING CONTROLLER, 580 kHz SWITCHING FREQ-MAX, PQCC32
LTC3827IUH#TR 3 A DUAL SWITCHING CONTROLLER, 580 kHz SWITCHING FREQ-MAX, PQCC32
相关代理商/技术参数
参数描述
LTC3823EUH#PBF 功能描述:IC REG CTRLR BUCK PWM CM 32-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:2,000 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:1MHz 占空比:50% 电源电压:9 V ~ 10 V 降压:无 升压:是 回扫:是 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 85°C 封装/外壳:8-TSSOP(0.173",4.40mm 宽) 包装:带卷 (TR)
LTC3823EUH#TRPBF 功能描述:IC REG CTRLR BUCK PWM CM 32-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:2,500 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:500kHz 占空比:96% 电源电压:4 V ~ 36 V 降压:无 升压:是 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:24-WQFN 裸露焊盘 包装:带卷 (TR)
LTC3823IGN#PBF 功能描述:IC REG CTRLR BUCK PWM CM 28-SSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:2,000 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:1MHz 占空比:50% 电源电压:9 V ~ 10 V 降压:无 升压:是 回扫:是 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 85°C 封装/外壳:8-TSSOP(0.173",4.40mm 宽) 包装:带卷 (TR)
LTC3823IGN#PBF 制造商:Linear Technology 功能描述:IC SYNC STEP-DOWN DC/DC CTRL SSOP-28
LTC3823IGN#TRPBF 功能描述:IC REG CTRLR BUCK PWM CM 28-SSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:2,500 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:500kHz 占空比:96% 电源电压:4 V ~ 36 V 降压:无 升压:是 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:24-WQFN 裸露焊盘 包装:带卷 (TR)