参数资料
型号: LTC3833IUDC#PBF
厂商: Linear Technology
文件页数: 17/36页
文件大小: 0K
描述: IC REG CTRLR BUCK PWM CM 20-QFN
标准包装: 91
PWM 型: 电流模式
输出数: 1
频率 - 最大: 2.2MHz
电源电压: 4.5 V ~ 38 V
降压:
升压:
回扫:
反相:
倍增器:
除法器:
Cuk:
隔离:
工作温度: -40°C ~ 125°C
封装/外壳: 20-WFQFN 裸露焊盘
包装: 管件
LTC3833
APPLICATIONS INFORMATION
V IN – V OUT V
Main Switch Duty Cycle ( D TOP ) =
Synchronous Switch Duty Cycle ( D BOT ) = 1–
? I OUT(MAX) ? ? R TG(HI) R TG(LO) ?
? ? C MILLER ? V
? ?
V MILLER ? ?
+ ? f
I RMS ? I OUT(MAX) ?
V OUT V IN
EnsurethatR1hasapowerratinghigherthanthisvalue.
If high efficiency is necessary at light loads, consider this
power loss when deciding whether to use DCR sensing or
R SENSE sensing. Light load power loss can be modestly
higher with a DCR network than with a sense resistor due
to the extra switching losses incurred through R1. However,
DCR sensing eliminates a sense resistor, reduces conduc-
tion losses and provides higher efficiency at heavy loads.
Peak efficiency is about the same with either method.
To maintain a good signal-to-noise ratio for the current
sense signal, use a minimum ? V SENSE of 10mV. For a
DCR sensing application, the actual ripple voltage will be
determined by:
? V SENSE = ? OUT
R1 ? C1 V IN ? f
Power MOSFET Selection
Two external power MOSFETs must be selected for the
LTC3833 controller: one N-channel MOSFET for the top
(main) switch and one N-channel MOSFET for the bottom
(synchronous) switch. The peak-to-peak drive levels are
set by the INTV CC voltage. This voltage is typically 5.3V.
Consequently, logic-level threshold MOSFETs must be
used in most applications. Pay close attention to the
BV DSS specification for the MOSFETs as well; most of the
logic-level MOSFETs are limited to 30V or less. Selection
criteria for the power MOSFETs include the on-resistance,
R DS(ON) , Miller capacitance, C MILLER , input voltage and
maximum output current. Miller capacitance, C MILLER ,
can be approximated from the gate charge curve usu-
ally provided on the MOSFET manufacturers’ data sheet.
C MILLER is equal to the increase in gate charge along the
horizontal axis where the curve is approximately flat, di-
vided by the specified change in V DS . This result is then
multiplied by the ratio of the application V DS to the gate
charge curve specified V DS . When the IC is operating in
continuous mode, the duty cycles for the top and bottom
MOSFETs are given by:
V OUT
V IN
V OUT
V IN
The MOSFET power dissipations at maximum output
current are given by:
P TOP = D TOP ? I OUT(MAX)2 ? R DS(ON)(MAX) ( 1 + δ ) + V IN2
? 2 ? ? INTVCC – V MILLER
P BOT = D BOT ? I OUT(MAX)2 ? R DS(ON)(MAX) (1 + δ )
where D TOP and D BOT are the duty cycles of the top MOSFET
and bottom MOSFET respectively, δ is the temperature de-
pendency of R DS(ON) , R TG(HI) is the TG pull-up resistance,
and R TG(LO) is the TG pull-down resistance. V MILLER is the
Miller effect V GS voltage and is taken graphically from the
MOSFET’s data sheet.
Both MOSFETs have I 2 R losses while the topside N-channel
equation includes an additional term for transition losses,
which are highest at high input voltages. For V IN < 20V,
the high current efficiency generally improves with larger
MOSFETs, while for V IN > 20V, the transition losses rapidly
increase to the point that the use of a higher R DS(ON) device
with lower C MILLER actually provides higher efficiency. The
synchronous MOSFET losses are greatest at high input
voltage when the top switch duty factor is low or during
short-circuit when the synchronous switch is on close to
100% of the period.
The term (1 + δ ) is generally given for a MOSFET in the
form of a normalized R DS(ON) vs temperature curve, but
δ = 0.005/°C ? (T J – T A ) can be used as an approximation
for low voltage MOSFETs (T J is estimated junction tem-
perature of the MOSFET and T A is ambient temperature).
C IN and C OUT Selection
In continuous mode, the source current of the top N-chan-
nel MOSFET is a square wave of duty cycle V OUT /V IN . To
prevent large voltage transients, a low ESR input capacitor
sized for the maximum RMS current must be used. The
maximum RMS capacitor current is given by:
? –1
V IN V OUT
This formula has a maximum at V IN = 2V OUT , where I RMS
= I OUT(MAX) /2. This simple worst-case condition is com-
monly used for design because even significant deviations
3833f
17
相关PDF资料
PDF描述
VI-2WF-EW-F2 CONVERTER MOD DC/DC 72V 100W
SRP1235-R60M INDUCTOR 600NH 29A SMD
LT1952EGN#PBF IC REG CTRLR ISO PWM CM 16-SSOP
VI-2WF-EW-F1 CONVERTER MOD DC/DC 72V 100W
VI-2WD-EY-B1 CONVERTER MOD DC/DC 85V 50W
相关代理商/技术参数
参数描述
LTC3834EDHC-1#PBF 功能描述:IC REG CTRLR BUCK PWM CM 16-DFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:2,000 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:1MHz 占空比:50% 电源电压:9 V ~ 10 V 降压:无 升压:是 回扫:是 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 85°C 封装/外壳:8-TSSOP(0.173",4.40mm 宽) 包装:带卷 (TR)
LTC3834EDHC-1#TRPBF 功能描述:IC REG CTRLR BUCK PWM CM 16-DFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:2,500 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:500kHz 占空比:96% 电源电压:4 V ~ 36 V 降压:无 升压:是 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:24-WQFN 裸露焊盘 包装:带卷 (TR)
LTC3834EFE#PBF 功能描述:IC REG CTRLR BUCK PWM CM 20TSSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 特色产品:LM3753/54 Scalable 2-Phase Synchronous Buck Controllers 标准包装:1 系列:PowerWise® PWM 型:电压模式 输出数:1 频率 - 最大:1MHz 占空比:81% 电源电压:4.5 V ~ 18 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-5°C ~ 125°C 封装/外壳:32-WFQFN 裸露焊盘 包装:Digi-Reel® 产品目录页面:1303 (CN2011-ZH PDF) 其它名称:LM3754SQDKR
LTC3834EFE#TRPBF 功能描述:IC REG CTRLR BUCK PWM CM 20TSSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:4,500 系列:PowerWise® PWM 型:控制器 输出数:1 频率 - 最大:1MHz 占空比:95% 电源电压:2.8 V ~ 5.5 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:6-WDFN 裸露焊盘 包装:带卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名称:LM1771SSDX
LTC3834EGN-1#PBF 功能描述:IC REG CTRLR BUCK PWM CM 16-SSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:2,500 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:500kHz 占空比:96% 电源电压:4 V ~ 36 V 降压:无 升压:是 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:24-WQFN 裸露焊盘 包装:带卷 (TR)