参数资料
型号: LTC3855IFE#PBF
厂商: Linear Technology
文件页数: 15/44页
文件大小: 0K
描述: IC REG CTRLR BUCK PWM CM 38-SSOP
标准包装: 50
系列: PolyPhase®
PWM 型: 电流模式
输出数: 2
频率 - 最大: 850kHz
占空比: 95%
电源电压: 4.5 V ~ 38 V
降压:
升压:
回扫:
反相:
倍增器:
除法器:
Cuk:
隔离:
工作温度: -40°C ~ 125°C
封装/外壳: 38-TFSOP (0.173",4.40mm 宽)裸露焊盘
包装: 管件
LTC3855
OPERATION
frequency of the LTC3855’s controllers can be selected
using the FREQ pin. If the MODE/PLLIN pin is not being
driven by an external clock source, the FREQ pin can be
used to program the controller’s operating frequency from
250kHz to 770kHz.
There is a precision 10μA current flowing out of the FREQ
pin, so the user can program the controller’s switching
frequency with a single resistor to SGND. A curve is
provided later in the application section showing the
relationship between the voltage on the FREQ pin and
switching frequency.
A phase-locked loop (PLL) is integrated on the LTC3855
to synchronize the internal oscillator to an external clock
source that is connected to the MODE/PLLIN pin. The
controller is operating in forced continuous mode when
it is synchronized.
The PLL loop filter network is integrated inside the LTC3855.
The phase-locked loop is capable of locking any frequency
within the range of 250kHz to 770kHz. The frequency setting
resistor should always be present to set the controller’s initial
switching frequency before locking to the external clock.
APPLICATIONS INFORMATION
The Typical Application on the first page is a basic LTC3855
application circuit. LTC3855 can be configured to use either
DCR (inductor resistance) sensing or low value resistor
sensing. The choice between the two current sensing
schemes is largely a design trade-off between cost, power
consumption, and accuracy. DCR sensing is becoming
popular because it saves expensive current sensing resis-
tors and is more power efficient, especially in high current
applications. However, current sensing resistors provide
the most accurate current limits for the controller. Other
external component selection is driven by the load require-
ment, and begins with the selection of R SENSE (if R SENSE is
used) and inductor value. Next, the power MOSFETs are se-
lected. Finally, input and output capacitors are selected.
Current Limit Programming
The I LIM pin is a tri-level logic input which sets the maxi-
mum current limit of the controller. When I LIM is either
grounded, floated or tied to INTV CC , the typical value
Power Good (PGOOD Pins)
When V FB pin voltage is not within ±10% of the 0.6V refer-
ence voltage, the PGOOD pin is pulled low. The PGOOD
pin is also pulled low when the RUN pin is below 1.2V or
when the LTC3855 is in the soft-start or tracking phase.
The PGOOD pin will flag power good immediately when
the V FB pin is within the ±10% of the reference window.
However, there is an internal 20μs power bad mask when
V FB goes out the ±10% window. Each channel has its own
PGOOD and only responds to its own channel signals.
The PGOOD pins are allowed to be pulled up by external
resistors to sources of up to 6V.
Output Overvoltage Protection
An overvoltage comparator, OV, guards against transient
overshoots (>10%) as well as other more serious condi-
tions that may overvoltage the output. In such cases, the
top MOSFET is turned off and the bottom MOSFET is turned
on until the overvoltage condition is cleared.
for the maximum current sense threshold will be 30mV,
50mV or 75mV, respectively. The maximum current sense
threshold will be adjusted to values between these settings
by applying a voltage less than 0.5V to the ITEMP pin. See
the Operation section for more details.
Which setting should be used? For the best current limit
accuracy, use the 75mV setting. The 30mV setting will
allow for the use of very low DCR inductors or sense
resistors, but at the expense of current limit accuracy.
The 50mV setting is a good balance between the two. For
single output dual phase applications, use the 50mV or
75mV setting for optimal current sharing.
SENSE + and SENSE – Pins
The SENSE + and SENSE – pins are the inputs to the current
comparators. The common mode input voltage range of
the current comparators is 0V to 12.5V. Both SENSE pins
are high impedance inputs with small base currents of
3855f
  
相关PDF资料
PDF描述
VI-25K-EY-B1 CONVERTER MOD DC/DC 40V 50W
LT3724IFE#TRPBF IC REG CTRLR BST INV PWM 16TSSOP
VI-25K-EW-F4 CONVERTER MOD DC/DC 40V 100W
LT3800IFE#TRPBF IC REG CTRLR INV PWM CM 16-TSSOP
VI-25K-EW-F3 CONVERTER MOD DC/DC 40V 100W
相关代理商/技术参数
参数描述
LTC3855IUJ#PBF 功能描述:IC REG CTRLR BUCK PWM CM 40-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:PolyPhase® 特色产品:LM3753/54 Scalable 2-Phase Synchronous Buck Controllers 标准包装:1 系列:PowerWise® PWM 型:电压模式 输出数:1 频率 - 最大:1MHz 占空比:81% 电源电压:4.5 V ~ 18 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-5°C ~ 125°C 封装/外壳:32-WFQFN 裸露焊盘 包装:Digi-Reel® 产品目录页面:1303 (CN2011-ZH PDF) 其它名称:LM3754SQDKR
LTC3855IUJ#PBF-ES 制造商:Linear Technology 功能描述:
LTC3855IUJ#TRPBF 功能描述:IC REG CTRLR BUCK PWM CM 40-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:PolyPhase® 标准包装:2,500 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:500kHz 占空比:96% 电源电压:4 V ~ 36 V 降压:无 升压:是 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:24-WQFN 裸露焊盘 包装:带卷 (TR)
LTC3856EFE#PBF 功能描述:IC REG CTRLR BUCK PWM CM 38TFSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:PolyPhase® 标准包装:2,000 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:1MHz 占空比:50% 电源电压:9 V ~ 10 V 降压:无 升压:是 回扫:是 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 85°C 封装/外壳:8-TSSOP(0.173",4.40mm 宽) 包装:带卷 (TR)
LTC3856EFE#TRPBF 功能描述:IC REG CTRLR BUCK PWM CM 38TSSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:PolyPhase® 标准包装:2,500 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:500kHz 占空比:96% 电源电压:4 V ~ 36 V 降压:无 升压:是 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:24-WQFN 裸露焊盘 包装:带卷 (TR)