参数资料
型号: LTC3855IFE#PBF
厂商: Linear Technology
文件页数: 28/44页
文件大小: 0K
描述: IC REG CTRLR BUCK PWM CM 38-SSOP
标准包装: 50
系列: PolyPhase®
PWM 型: 电流模式
输出数: 2
频率 - 最大: 850kHz
占空比: 95%
电源电压: 4.5 V ~ 38 V
降压:
升压:
回扫:
反相:
倍增器:
除法器:
Cuk:
隔离:
工作温度: -40°C ~ 125°C
封装/外壳: 38-TFSOP (0.173",4.40mm 宽)裸露焊盘
包装: 管件
LTC3855
APPLICATIONS INFORMATION
If the duty cycle falls below what can be accommodated
by the minimum on-time, the controller will begin to skip
cycles. The output voltage will continue to be regulated,
but the ripple voltage and current will increase.
The minimum on-time for the LTC3855 is approximately
90ns, with reasonably good PCB layout, minimum 30%
inductor current ripple and at least 10mV – 15mV ripple
on the current sense signal. The minimum on-time can be
affected by PCB switching noise in the voltage and current
loop. As the peak sense voltage decreases the minimum
on-time gradually increases to 130ns. This is of particular
concern in forced continuous applications with low ripple
current at light loads. If the duty cycle drops below the
minimum on-time limit in this situation, a significant
amount of cycle skipping can occur with correspondingly
larger current and voltage ripple.
Efficiency Considerations
The percent efficiency of a switching regulator is equal to
the output power divided by the input power times 100%.
It is often useful to analyze individual losses to determine
what is limiting the efficiency and which change would
produce the most improvement. Percent efficiency can
be expressed as:
%Efficiency = 100% – (L1 + L2 + L3 + ...)
where L1, L2, etc. are the individual losses as a percent-
age of input power.
Although all dissipative elements in the circuit produce
losses, four main sources usually account for most of the
losses in LTC3855 circuits: 1) IC V IN current, 2) INTV CC
regulator current, 3) I 2 R losses, 4) Topside MOSFET
transition losses.
1. The V IN current is the DC supply current given in
the Electrical Characteristics table, which excludes
MOSFET driver and control currents. V IN current typi-
cally results in a small (<0.1%) loss.
2. INTV CC current is the sum of the MOSFET driver and
control currents. The MOSFET driver current results
from switching the gate capacitance of the power
MOSFETs. Each time a MOSFET gate is switched from
low to high to low again, a packet of charge dQ moves
from INTV CC to ground. The resulting dQ/dt is a cur-
rent out of INTV CC that is typically much larger than the
control circuit current. In continuous mode, I GATECHG
= f(Q T + Q B ), where Q T and Q B are the gate charges of
the topside and bottom side MOSFETs.
Supplying INTV CC power through EXTV CC from an out-
put-derived source will scale the V IN current required
for the driver and control circuits by a factor of (Duty
Cycle)/(Efficiency). For example, in a 20V to 5V applica-
tion, 10mA of INTV CC current results in approximately
2.5mA of V IN current. This reduces the mid-current loss
from 10% or more (if the driver was powered directly
from V IN ) to only a few percent.
3. I 2 R losses are predicted from the DC resistances of the
fuse (if used), MOSFET, inductor, current sense resistor.
In continuous mode, the average output current flows
through L and R SENSE , but is “chopped” between the
topside MOSFET and the synchronous MOSFET. If the
two MOSFETs have approximately the same R DS(ON) ,
then the resistance of one MOSFET can simply be
summed with the resistances of L and R SENSE to ob-
tain I 2 R losses. For example, if each R DS(ON) = 10m?,
R L = 10m?, R SENSE = 5m?, then the total resistance
is 25m?. This results in losses ranging from 2% to
8% as the output current increases from 3A to 15A for
a 5V output, or a 3% to 12% loss for a 3.3V output.
Efficiency varies as the inverse square of V OUT for the
same external components and output power level. The
combined effects of increasingly lower output voltages
and higher currents required by high performance digital
systems is not doubling but quadrupling the importance
of loss terms in the switching regulator system!
4. Transition losses apply only to the topside MOSFET(s),
and become significant only when operating at high
input voltages (typically 15V or greater). Transition
losses can be estimated from:
Transition Loss = (1.7) V IN2 I O(MAX) C RSS f
Other “hidden” losses such as copper trace and internal
battery resistances can account for an additional 5% to
10% efficiency degradation in portable systems. It is very
important to include these “system” level losses during
the design phase. The internal battery and fuse resistance
3855f
  
相关PDF资料
PDF描述
VI-25K-EY-B1 CONVERTER MOD DC/DC 40V 50W
LT3724IFE#TRPBF IC REG CTRLR BST INV PWM 16TSSOP
VI-25K-EW-F4 CONVERTER MOD DC/DC 40V 100W
LT3800IFE#TRPBF IC REG CTRLR INV PWM CM 16-TSSOP
VI-25K-EW-F3 CONVERTER MOD DC/DC 40V 100W
相关代理商/技术参数
参数描述
LTC3855IUJ#PBF 功能描述:IC REG CTRLR BUCK PWM CM 40-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:PolyPhase® 特色产品:LM3753/54 Scalable 2-Phase Synchronous Buck Controllers 标准包装:1 系列:PowerWise® PWM 型:电压模式 输出数:1 频率 - 最大:1MHz 占空比:81% 电源电压:4.5 V ~ 18 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-5°C ~ 125°C 封装/外壳:32-WFQFN 裸露焊盘 包装:Digi-Reel® 产品目录页面:1303 (CN2011-ZH PDF) 其它名称:LM3754SQDKR
LTC3855IUJ#PBF-ES 制造商:Linear Technology 功能描述:
LTC3855IUJ#TRPBF 功能描述:IC REG CTRLR BUCK PWM CM 40-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:PolyPhase® 标准包装:2,500 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:500kHz 占空比:96% 电源电压:4 V ~ 36 V 降压:无 升压:是 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:24-WQFN 裸露焊盘 包装:带卷 (TR)
LTC3856EFE#PBF 功能描述:IC REG CTRLR BUCK PWM CM 38TFSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:PolyPhase® 标准包装:2,000 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:1MHz 占空比:50% 电源电压:9 V ~ 10 V 降压:无 升压:是 回扫:是 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 85°C 封装/外壳:8-TSSOP(0.173",4.40mm 宽) 包装:带卷 (TR)
LTC3856EFE#TRPBF 功能描述:IC REG CTRLR BUCK PWM CM 38TSSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:PolyPhase® 标准包装:2,500 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:500kHz 占空比:96% 电源电压:4 V ~ 36 V 降压:无 升压:是 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:24-WQFN 裸露焊盘 包装:带卷 (TR)