参数资料
型号: MAX1858EEG+
厂商: Maxim Integrated Products
文件页数: 17/21页
文件大小: 0K
描述: IC REG CTRLR BUCK PWM VM 24-QSOP
产品培训模块: Lead (SnPb) Finish for COTS
Obsolescence Mitigation Program
标准包装: 50
PWM 型: 电压模式
输出数: 2
频率 - 最大: 660kHz
占空比: 90%
电源电压: 4.75 V ~ 23 V
降压:
升压:
回扫:
反相:
倍增器:
除法器:
Cuk:
隔离:
工作温度: -40°C ~ 85°C
封装/外壳: 24-SSOP(0.154",3.90mm 宽)
包装: 管件
Dual 180° Out-of-Phase PWM Step-Down
Controller with Power Sequencing and POR
50
40
30
BODE PLOT FOR VOLTAGE-
MODE CONTROLLERS
f LC
Calculate MOSFET temperature rise according to pack-
age thermal-resistance specifications to ensure that
both MOSFETs are within their maximum junction tem-
perature at high ambient temperature. The worst-case
dissipation for the high-side MOSFET (P NH ) occurs at
both extremes of input voltage, and the worst-case dis-
P NH ( SWITCHING ) = IN LOAD OSC ? GS GD ?
20
10
0
-10
-20
-30
f Z-COMP_A
f ESR
f CO
f COMP_B
f SWITCH
sipation for the low-side MOSFET (P NL ) occurs at maxi-
mum input voltage.
V I f ? Q + Q ?
2 ? I GATE ?
I GATE is the average DH driver output current capability
determined by:
(
-40
0.001
0.01 0.1
FREQUENCY (MHz)
1
I GATE =
V L
2 R DS ( ON ) DH + R GATE
)
P NH ( CONDUCTION ) = I LOAD 2 R DS ( ON ) NH ? OUT ?
P NL = I LOAD 2 R DS ( ON ) NL ? 1- ? OUT ? ?
Figure 8. Voltage-Mode Loop Analysis
All four N-channel MOSFETs must be a logic-level type
with guaranteed on-resistance specifications at V GS ≥
4.5V. For maximum efficiency, choose a high-side
MOSFET (N H _) that has conduction losses equal to the
switching losses at the optimum input voltage. Check to
ensure that the conduction losses at minimum input
voltage do not exceed MOSFET package thermal limits,
or violate the overall thermal budget. Also, check to
ensure that the conduction losses plus switching losses
at the maximum input voltage do not exceed package
ratings or violate the overall thermal budget.
Ensure that the MAX1858 DL _ gate driver can drive
N L _. In particular, check that the dv/dt caused by N H _
turning on does not pull up the N L _ gate through N L _ ’ s
drain-to-gate capacitance. This is the most frequent
cause of cross-conduction problems.
Gate-charge losses are dissipated by the driver and do
not heat the MOSFET. All MOSFETs must be selected
so that their total gate charge is low enough that V L can
power all four drivers without overheating the IC:
P VL = V IN × Q G _ TOTAL × f SW
MOSFET package power dissipation often becomes a
dominant design factor. I 2 R power losses are the great-
est heat contributor for both high-side and low-side
MOSFETs. I 2 R losses are distributed between N H _ and
N L _ according to duty factor as shown in the equations
below. Switching losses affect only the high-side
MOSFET, since the low-side MOSFET is a zero-voltage
switched device when used in the buck topology.
where R DS(ON)DH is the high-side MOSFET driver ’ s on-
resistance (5 ? max), and R GATE is any series resis-
tance between DH and BST (Figure 3).
? V ?
? V IN ?
P NH ( TOTAL ) = P NH ( SWITCHING ) + P NH ( CONDUCTION )
? ? V ? ?
? ? V IN ? ?
where P NH(CONDUCTION) is the conduction power loss
in the high-side MOSFET, and P NL is the total low-side
power loss.
To reduce EMI caused by switching noise, add a 0.1μF
ceramic capacitor from the high-side switch drain to
the low-side switch source or add resistors in series
with DL_ and DH_ to increase the MOSFETs ’ turn-on
and turn-off times.
Applications Information
Dropout Performance
When working with low input voltages, the output-voltage
adjustable range for continuous-conduction operation is
restricted by the minimum off-time (t OFF(MIN) ). For best
dropout performance, use the lowest (100kHz) switching-
frequency setting. Manufacturing tolerances and internal
propagation delays introduce an error to the switching
frequency and minimum off-time specifications. This error
is more significant at higher frequencies. Also, keep in
mind that transient response performance of buck regula-
tors operated close to dropout is poor, and bulk output
______________________________________________________________________________________
17
相关PDF资料
PDF描述
MAX772ESA+ IC REG CTRLR BST PWM 8-SOIC
MAX1744AUB+ IC REG CTRLR BUCK PWM 10-UMAX
GBC30DRYN-S93 CONN EDGECARD 60POS DIP .100 SLD
GBC35DRYI-S93 CONN EDGECARD 70POS DIP .100 SLD
MAX1962EEP+ IC REG CTRLR BUCK PWM VM 20-QSOP
相关代理商/技术参数
参数描述
MAX1858EEG+ 功能描述:电压模式 PWM 控制器 Dual 180 Out Buck Controllers RoHS:否 制造商:Texas Instruments 输出端数量:1 拓扑结构:Buck 输出电压:34 V 输出电流: 开关频率: 工作电源电压:4.5 V to 5.5 V 电源电流:600 uA 最大工作温度:+ 125 C 最小工作温度:- 40 C 封装 / 箱体:WSON-8 封装:Reel
MAX1858EEG+T 功能描述:电压模式 PWM 控制器 Dual 180 Out Buck Controllers RoHS:否 制造商:Texas Instruments 输出端数量:1 拓扑结构:Buck 输出电压:34 V 输出电流: 开关频率: 工作电源电压:4.5 V to 5.5 V 电源电流:600 uA 最大工作温度:+ 125 C 最小工作温度:- 40 C 封装 / 箱体:WSON-8 封装:Reel
MAX1858EEG-T 功能描述:DC/DC 开关控制器 RoHS:否 制造商:Texas Instruments 输入电压:6 V to 100 V 开关频率: 输出电压:1.215 V to 80 V 输出电流:3.5 A 输出端数量:1 最大工作温度:+ 125 C 安装风格: 封装 / 箱体:CPAK
MAX1858EVKIT 功能描述:DC/DC 开关控制器 Evaluation Kit for the MAX1858 MAX1875 MAX1876 RoHS:否 制造商:Texas Instruments 输入电压:6 V to 100 V 开关频率: 输出电压:1.215 V to 80 V 输出电流:3.5 A 输出端数量:1 最大工作温度:+ 125 C 安装风格: 封装 / 箱体:CPAK
MAX185ACNG 功能描述:模数转换器 - ADC RoHS:否 制造商:Texas Instruments 通道数量:2 结构:Sigma-Delta 转换速率:125 SPs to 8 KSPs 分辨率:24 bit 输入类型:Differential 信噪比:107 dB 接口类型:SPI 工作电源电压:1.7 V to 3.6 V, 2.7 V to 5.25 V 最大工作温度:+ 85 C 安装风格:SMD/SMT 封装 / 箱体:VQFN-32