参数资料
型号: NCP1573DR2
厂商: ON Semiconductor
文件页数: 9/17页
文件大小: 0K
描述: IC REG CTRLR BUCK PWM 8-SOIC
产品变化通告: Product Discontinuation 31/Mar/2005
标准包装: 1
PWM 型: 电流/电压模式,V²?
输出数: 1
频率 - 最大: 250kHz
电源电压: 11.4 V ~ 12.6 V
降压:
升压:
回扫:
反相:
倍增器:
除法器:
Cuk:
隔离:
工作温度: 0°C ~ 125°C
封装/外壳: 8-SOIC(0.154",3.90mm 宽)
包装: 剪切带 (CT)
其它名称: NCP1573DR2OSCT
NCP1573
APPLICATION INFORMATION
THEORY OF OPERATION
The NCP1573 is a simple, synchronous, fixed ? frequency,
low ? voltage buck controller using the V 2 control method. It
provides a programmable ? delay Power Good function to
indicate when the output voltage is out of regulation.
V 2 Control Method
The V 2 control method uses a ramp signal generated by
the ESR of the output capacitors. This ramp is proportional
to the AC current through the main inductor and is offset by
0.5 V
V IN
V COMP
V FB
GATE(H)
the DC output voltage. This control scheme inherently
compensates for variation in either line or load conditions,
STARTUP
t S
NORMAL OPERATION
since the ramp signal is generated from the output voltage
itself. The V 2 method differs from traditional techniques
such as voltage mode control, which generates an artificial
ramp, and current mode control, which generates a ramp
using the inductor current.
Figure 20. Idealized Waveforms
A variation in line voltage changes the current ramp in the
inductor, which causes the V 2 control scheme to compensate
the duty cycle. Since any variation in inductor current
modifies the ramp signal, as in current mode control, the V 2
control scheme offers the same advantages in line transient
RAMP
?
PWM
+
GATE(H)
GATE(L)
Output
Voltage
response.
A variation in load current will affect the output voltage,
modifying the ramp signal. A load step immediately changes
the state of the comparator output, which controls the main
switch. The comparator response time and the transition
speed of the main switch determine the load transient
response. Unlike traditional control methods, the reaction
time to the output load step is not related to the crossover
COMP
Slope
Compensation
Error
Signal
Error
Amplifier
?
+
V FB
Reference
Voltage
frequency of the error signal loop.
The error signal loop can have a low crossover frequency,
since the transient response is handled by the ramp signal
loop. The main purpose of this ‘slow’ feedback loop is to
provide DC accuracy. Noise immunity is significantly
Figure 19. V 2 Control with Slope Compensation
The V 2 control method is illustrated in Figure 19. The
output voltage generates both the error signal and the ramp
signal. Since the ramp signal is simply the output voltage, it
is affected by any change in the output, regardless of the
origin of that change. The ramp signal also contains the DC
portion of the output voltage, allowing the control circuit to
drive the main switch from 0% to 100% duty cycle as
required.
improved, since the error amplifier bandwidth can be rolled
off at a low frequency. Enhanced noise immunity improves
remote sensing of the output voltage, since the noise
associated with long feedback traces can be effectively
filtered.
Line and load regulation are drastically improved because
there are two independent control loops. A voltage mode
controller relies on the change in the error signal to
compensate for a deviation in either line or load voltage.
This change in the error signal causes the output voltage to
change corresponding to the gain of the error amplifier,
which is normally specified as line and load regulation. A
current mode controller maintains a fixed error signal during
line transients, since the slope of the ramp signal changes in
this case. However, regulation of load transients still requires
a change in the error signal. The V 2 method of control
maintains a fixed error signal for both line and load variation,
since the ramp signal is affected by both line and load.
The stringent load transient requirements of modern
microprocessors require the output capacitors to have very
low ESR. The resulting shallow slope in the output ripple can
lead to pulse width jitter and variation caused by both random
and synchronous noise. A ramp waveform generated in the
oscillator is added to the ramp signal from the output voltage
http://onsemi.com
9
相关PDF资料
PDF描述
NCP1575DR2G IC REG CTRLR BUCK PWM 8-SOIC
NCP1579DR2G IC REG CTRLR BUCK PWM VM 8-SOIC
NCP1580DR2G IC REG CTRLR BUCK PWM VM 8-SOIC
NCP1581DR2G IC REG CTRLR BUCK PWM VM 14-SOIC
NCP1582ADR2G IC REG CTRLR BUCK PWM VM 8-SOIC
相关代理商/技术参数
参数描述
NCP1575D 功能描述:DC/DC 开关控制器 Low Voltage RoHS:否 制造商:Texas Instruments 输入电压:6 V to 100 V 开关频率: 输出电压:1.215 V to 80 V 输出电流:3.5 A 输出端数量:1 最大工作温度:+ 125 C 安装风格: 封装 / 箱体:CPAK
NCP1575DG 功能描述:DC/DC 开关控制器 Low Voltage Synchronous Buck RoHS:否 制造商:Texas Instruments 输入电压:6 V to 100 V 开关频率: 输出电压:1.215 V to 80 V 输出电流:3.5 A 输出端数量:1 最大工作温度:+ 125 C 安装风格: 封装 / 箱体:CPAK
NCP1575DR2 功能描述:DC/DC 开关控制器 Low Voltage RoHS:否 制造商:Texas Instruments 输入电压:6 V to 100 V 开关频率: 输出电压:1.215 V to 80 V 输出电流:3.5 A 输出端数量:1 最大工作温度:+ 125 C 安装风格: 封装 / 箱体:CPAK
NCP1575DR2G 功能描述:DC/DC 开关控制器 Low Voltage Synchronous Buck RoHS:否 制造商:Texas Instruments 输入电压:6 V to 100 V 开关频率: 输出电压:1.215 V to 80 V 输出电流:3.5 A 输出端数量:1 最大工作温度:+ 125 C 安装风格: 封装 / 箱体:CPAK
NCP1578MNR2G 功能描述:IC REG DL BCK/LINEAR SYNC 20-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - 线性 + 切换式 系列:- 标准包装:2,500 系列:- 拓扑:降压(降压)同步(3),线性(LDO)(2) 功能:任何功能 输出数:5 频率 - 开关:300kHz 电压/电流 - 输出 1:控制器 电压/电流 - 输出 2:控制器 电压/电流 - 输出 3:控制器 带 LED 驱动器:无 带监控器:无 带序列发生器:是 电源电压:5.6 V ~ 24 V 工作温度:-40°C ~ 85°C 安装类型:* 封装/外壳:* 供应商设备封装:* 包装:*