参数资料
型号: PIC18LF2520-I/SP
厂商: Microchip Technology
文件页数: 55/151页
文件大小: 0K
描述: IC MCU FLASH 16KX16 28-DIP
产品培训模块: Asynchronous Stimulus
标准包装: 15
系列: PIC® 18F
核心处理器: PIC
芯体尺寸: 8-位
速度: 40MHz
连通性: I²C,SPI,UART/USART
外围设备: 欠压检测/复位,HLVD,POR,PWM,WDT
输入/输出数: 25
程序存储器容量: 32KB(16K x 16)
程序存储器类型: 闪存
EEPROM 大小: 256 x 8
RAM 容量: 1.5K x 8
电压 - 电源 (Vcc/Vdd): 2 V ~ 5.5 V
数据转换器: A/D 10x10b
振荡器型: 内部
工作温度: -40°C ~ 85°C
封装/外壳: 28-DIP(0.300",7.62mm)
包装: 管件
产品目录页面: 643 (CN2011-ZH PDF)
PIC16(L)F1782/3
DS41579C-page 322
Preliminary
2011-2012 Microchip Technology Inc.
27.1.2
EUSART ASYNCHRONOUS
RECEIVER
The Asynchronous mode is typically used in RS-232
systems. The receiver block diagram is shown in
Figure 27-2. The data is received on the RX/DT pin and
drives the data recovery block. The data recovery block
is actually a high-speed shifter operating at 16 times
the baud rate, whereas the serial Receive Shift
Register (RSR) operates at the bit rate. When all 8 or 9
bits of the character have been shifted in, they are
immediately
transferred
to
a
two
character
First-In-First-Out (FIFO) memory. The FIFO buffering
allows reception of two complete characters and the
start of a third character before software must start
servicing the EUSART receiver. The FIFO and RSR
registers are not directly accessible by software.
Access to the received data is via the RCREG register.
27.1.2.1
Enabling the Receiver
The EUSART receiver is enabled for asynchronous
operation by configuring the following three control bits:
CREN = 1
SYNC = 0
SPEN = 1
All other EUSART control bits are assumed to be in
their default state.
Setting the CREN bit of the RCSTA register enables the
receiver circuitry of the EUSART. Clearing the SYNC bit
of the TXSTA register configures the EUSART for
asynchronous operation. Setting the SPEN bit of the
RCSTA register enables the EUSART. The programmer
must set the corresponding TRIS bit to configure the
RX/DT I/O pin as an input.
27.1.2.2
Receiving Data
The receiver data recovery circuit initiates character
reception on the falling edge of the first bit. The first bit,
also known as the Start bit, is always a zero. The data
recovery circuit counts one-half bit time to the center of
the Start bit and verifies that the bit is still a zero. If it is
not a zero then the data recovery circuit aborts
character reception, without generating an error, and
resumes looking for the falling edge of the Start bit. If
the Start bit zero verification succeeds then the data
recovery circuit counts a full bit time to the center of the
next bit. The bit is then sampled by a majority detect
circuit and the resulting ‘0’ or ‘1’ is shifted into the RSR.
This repeats until all data bits have been sampled and
shifted into the RSR. One final bit time is measured and
the level sampled. This is the Stop bit, which is always
a ‘1’. If the data recovery circuit samples a ‘0’ in the
Stop bit position then a framing error is set for this
character, otherwise the framing error is cleared for this
Error” for more information on framing errors.
Immediately after all data bits and the Stop bit have
been received, the character in the RSR is transferred
to the EUSART receive FIFO and the RCIF interrupt
flag bit of the PIR1 register is set. The top character in
the FIFO is transferred out of the FIFO by reading the
RCREG register.
27.1.2.3
Receive Interrupts
The RCIF interrupt flag bit of the PIR1 register is set
whenever the EUSART receiver is enabled and there is
an unread character in the receive FIFO. The RCIF
interrupt flag bit is read-only, it cannot be set or cleared
by software.
RCIF interrupts are enabled by setting all of the
following bits:
RCIE, Interrupt Enable bit of the PIE1 register
PEIE, Peripheral Interrupt Enable bit of the
INTCON register
GIE, Global Interrupt Enable bit of the INTCON
register
The RCIF interrupt flag bit will be set when there is an
unread character in the FIFO, regardless of the state of
interrupt enable bits.
Note:
If the RX/DT function is on an analog pin,
the corresponding ANSEL bit must be
cleared for the receiver to function.
Note:
If the receive FIFO is overrun, no additional
characters will be received until the overrun
condition is cleared. See Section 27.1.2.5
information on overrun errors.
相关PDF资料
PDF描述
PIC24HJ128GP206A-I/PT IC PIC MCU FLASH 128KB 64-TQFP
PIC18LF4423-I/P IC PIC MCU FLASH 8KX16 40DIP
213684-1 34P PLUG KIT,M-SERIES,CC,JS
PIC18LF2455-I/SO IC PIC MCU FLASH 12KX16 28SOIC
DSPIC33FJ64GP204-E/PT IC DSPIC MCU/DSP 64K 44-TQFP
相关代理商/技术参数
参数描述
PIC18LF2520T-I/ML 功能描述:8位微控制器 -MCU 32KB 1536 RAM 25I/O RoHS:否 制造商:Silicon Labs 核心:8051 处理器系列:C8051F39x 数据总线宽度:8 bit 最大时钟频率:50 MHz 程序存储器大小:16 KB 数据 RAM 大小:1 KB 片上 ADC:Yes 工作电源电压:1.8 V to 3.6 V 工作温度范围:- 40 C to + 105 C 封装 / 箱体:QFN-20 安装风格:SMD/SMT
PIC18LF2520T-I/SO 功能描述:8位微控制器 -MCU 32KB 1536 RAM 25I/O RoHS:否 制造商:Silicon Labs 核心:8051 处理器系列:C8051F39x 数据总线宽度:8 bit 最大时钟频率:50 MHz 程序存储器大小:16 KB 数据 RAM 大小:1 KB 片上 ADC:Yes 工作电源电压:1.8 V to 3.6 V 工作温度范围:- 40 C to + 105 C 封装 / 箱体:QFN-20 安装风格:SMD/SMT
PIC18LF2523-I/ML 功能描述:8位微控制器 -MCU 32KB 1536bytes-RAM 25I/O RoHS:否 制造商:Silicon Labs 核心:8051 处理器系列:C8051F39x 数据总线宽度:8 bit 最大时钟频率:50 MHz 程序存储器大小:16 KB 数据 RAM 大小:1 KB 片上 ADC:Yes 工作电源电压:1.8 V to 3.6 V 工作温度范围:- 40 C to + 105 C 封装 / 箱体:QFN-20 安装风格:SMD/SMT
PIC18LF2523-I/SO 功能描述:8位微控制器 -MCU 32KB 1536bytes-RAM 25I/O RoHS:否 制造商:Silicon Labs 核心:8051 处理器系列:C8051F39x 数据总线宽度:8 bit 最大时钟频率:50 MHz 程序存储器大小:16 KB 数据 RAM 大小:1 KB 片上 ADC:Yes 工作电源电压:1.8 V to 3.6 V 工作温度范围:- 40 C to + 105 C 封装 / 箱体:QFN-20 安装风格:SMD/SMT
PIC18LF2523-I/SO 制造商:Microchip Technology Inc 功能描述:8-BIT MICROCONTROLLER IC