参数资料
型号: AD676KNZ
厂商: Analog Devices Inc
文件页数: 14/16页
文件大小: 0K
描述: IC ADC 16BIT 100KSPS 28-DIP
标准包装: 1
位数: 16
采样率(每秒): 100k
数据接口: 并联
转换器数目: 2
功率耗散(最大): 480mW
电压电源: 模拟和数字,双 ±
工作温度: 0°C ~ 70°C
安装类型: 通孔
封装/外壳: 28-DIP(0.600",15.24mm)
供应商设备封装: 28-PDIP
包装: 管件
输入数目和类型: 1 个单端,双极
AD676
REV. A
–7–
NYQUIST FREQUENCY
An implication of the Nyquist sampling theorem, the “Nyquist
frequency” of a converter is that input frequency which is one
half the sampling frequency of the converter.
TOTAL HARMONIC DISTORTION
Total harmonic distortion (THD) is the ratio of the rms sum of
the harmonic components to the rms value of a full-scale input
signal and is expressed in percent (%) or decibels (dB). For in-
put signals or harmonics that are above the Nyquist frequency,
the aliased components are used.
SIGNAL-TO-NOISE PLUS DISTORTION RATIO
Signal-to-noise plus distortion is defined to be the ratio of the
rms value of the measured input signal to the rms sum of all
other spectral components below the Nyquist frequency, includ-
ing harmonics but excluding dc.
GAIN ERROR
The last transition should occur at an analog value 1.5 LSB be-
low the nominal full scale (4.99977 volts for a
±5 V range). The
gain error is the deviation of the actual difference between the
first and last code transition from the ideal difference between
the first and last code transition.
BIPOLAR ZERO ERROR
Bipolar zero error is the difference between the ideal midscale
input voltage (0 V) and the actual voltage producing the
midscale output code.
DIFFERENTIAL NONLINEARITY (DNL)
In an ideal ADC, code transitions are one LSB apart. Differen-
tial nonlinearity is the maximum deviation from this ideal value.
It is often specified in terms of resolution for which no missing
codes are guaranteed.
INTEGRAL NONLINEARITY (INL)
The ideal transfer function for an ADC is a straight line bisect-
ing the center of each code drawn between “zero” and “full
scale.” The point used as “zero” occurs 1/2 LSB before the
most negative code transition. “Full scale” is defined as a level
1.5 LSB beyond the most positive code transition. Integral
nonlinearity is the worst-case deviation of a code center average
from the straight line.
BANDWIDTH
The full-power bandwidth is that input frequency at which the
amplitude of the reconstructed fundamental is reduced by 3 dB
for a full-scale input.
INTERMODULATION DISTORTION (IMD)
With inputs consisting of sine waves at two frequencies, fa and
fb, any device with nonlinearities will create distortion products,
of order (m+n), at sum and difference frequencies of mfa
± nfb,
where m, n = 0, 1, 2, 3. . . . Intermodulation terms are those for
which m or n is not equal to zero. For example, the second or-
der terms are (fa + fb) and (fa – fb), and the third order terms
are (2 fa + fb), (2 fa – fb), (fa + 2 fb) and (fa – 2 fb). The IMD
products are expressed as the decibel ratio of the rms sum of the
measured input signals to the rms sum of the distortion terms.
The two signals applied to the converter are of equal amplitude,
and the peak value of their sum is –0.5 dB from full scale. The
IMD products are normalized to a 0 dB input signal.
APERTURE DELAY
Aperture delay is the time required after SAMPLE pin is taken
LOW for the internal sample-hold of the AD676 to open, thus
holding the value of VlN.
APERTURE JITTER
Aperture jitter is the variation in the aperture delay from sample
to sample.
POWER SUPPLY REJECTION
DC variations in the power supply voltage will affect the overall
transfer function of the ADC, resulting in zero error and gain er-
ror changes. Power supply rejection is the maximum change in
either the bipolar zero error or gain error value. Additionally,
there is another power supply variation to consider. AC ripple
on the power supplies can couple noise into the ADC, resulting
in degradation of dynamic performance. This is displayed in
Figure 16.
INPUT SETTLING TIME
Settling time is a function of the SHA’s ability to track fast
slewing signals. This is specified as the maximum time required
in track mode after a full-scale step input to guarantee rated
conversion accuracy.
Definition of Specifications–
相关PDF资料
PDF描述
MS3106E28-21PW CONN PLUG 37POS STRAIGHT W/PINS
MS3106E20-29SZ CONN PLUG 17POS STRAIGHT W/SCKT
MS27473T10C99S CONN PLUG 7POS STRAIGHT W/SCKT
IDT72V801L20PF IC SYNC FIFO 256X9 20NS 64QFP
MS27467T21A41S CONN PLUG 41POS STRAIGHT W/SCKT
相关代理商/技术参数
参数描述
AD676TD 制造商:未知厂家 制造商全称:未知厂家 功能描述:Analog-to-Digital Converter, 16-Bit
AD676TD/883B 制造商:Analog Devices 功能描述:ADC Single SAR 100ksps 16-bit Parallel 28-Pin CDIP 制造商:Analog Devices 功能描述:ADC SGL SAR 100KSPS 16BIT PARALLEL 28CDIP - Rail/Tube 制造商:Rochester Electronics LLC 功能描述:IC, 16-BIT SAMPLING ADC - Bulk 制造商:Analog Devices Inc. 功能描述:Analog to Digital Converters - ADC 16-Bit Parallel 100 kSPS Sampling
AD677 制造商:AD 制造商全称:Analog Devices 功能描述:16-Bit 100 kSPS Sampling ADC
AD677AD 功能描述:IC ADC 16BIT SAMPLING 16CDIP RoHS:否 类别:集成电路 (IC) >> 数据采集 - 模数转换器 系列:- 标准包装:1 系列:microPOWER™ 位数:8 采样率(每秒):1M 数据接口:串行,SPI? 转换器数目:1 功率耗散(最大):- 电压电源:模拟和数字 工作温度:-40°C ~ 125°C 安装类型:表面贴装 封装/外壳:24-VFQFN 裸露焊盘 供应商设备封装:24-VQFN 裸露焊盘(4x4) 包装:Digi-Reel® 输入数目和类型:8 个单端,单极 产品目录页面:892 (CN2011-ZH PDF) 其它名称:296-25851-6
AD677BD 功能描述:IC ADC 16BIT SAMPLING 16-CDIP RoHS:否 类别:集成电路 (IC) >> 数据采集 - 模数转换器 系列:- 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:250 系列:- 位数:12 采样率(每秒):1.8M 数据接口:并联 转换器数目:1 功率耗散(最大):1.82W 电压电源:模拟和数字 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:48-LQFP 供应商设备封装:48-LQFP(7x7) 包装:管件 输入数目和类型:2 个单端,单极