参数资料
型号: IDT72V3654L15PF
厂商: IDT, Integrated Device Technology Inc
文件页数: 8/37页
文件大小: 0K
描述: IC BI FIFO 4096X36 15NS 128QFP
标准包装: 36
系列: 72V
功能: 异步
存储容量: 147K(4K x 36)
数据速率: 67MHz
访问时间: 15ns
电源电压: 3.15 V ~ 3.45 V
工作温度: 0°C ~ 70°C
安装类型: 表面贴装
封装/外壳: 128-LQFP
供应商设备封装: 128-TQFP(14x20)
包装: 托盘
其它名称: 72V3654L15PF
16
COMMERCIALTEMPERATURERANGE
IDT72V3654/72V3664/72V3674 3.3V CMOS SyncBiFIFOTM WITH BUS-MATCHING
2,048 x 36 x 2, 4,096 x 36 x 2 and 8,192 x 36 x 2
LOW-to-HIGH transition of its synchronizing clock after the FIFO read that
reduces the number of words in memory to [2,048/4,096/8,192-(Y+1)]. A
LOW-to-HIGH transition of an Almost-Full flag synchronizing clock begins the
first synchronization cycle if it occurs at time tSKEW2 or greater after the read
that reduces the number of words in memory to [2,048/4,096/8,192-(Y+1)].
Otherwise,thesubsequentsynchronizingclockcyclemaybethefirstsynchro-
nization cycle (see Figure 25 and 26).
MAILBOX REGISTERS
Each FIFO has a 36-bit bypass register to pass command and control
information between Port A and Port B without putting it in queue. The Mailbox
select (MBA, MBB) inputs choose between a mail register and a FIFO for a
port data transfer operation. The usable width of both the Mail1 and Mail2
registers matches the selected bus size for Port B.
ALOW-to-HIGHtransitiononCLKAwritesdatatotheMail1Registerwhen
a Port A write is selected by
CSA, W/RA, and ENA with MBA HIGH. If the
selectedPortBbussizeisalso36bits,thentheusablewidthoftheMail1register
employs data lines A0-A35. If the selected Port B bus size is 18 bits, then the
usable width of the Mail1 Register employs data lines A0-A17. (In this case,
A18-A35 are don’t care inputs.) If the selected Port B bus size is 9 bits, then
the usable width of the Mail1 Register employs data lines A0-A8. (In this case,
A9-A35 are don’t care inputs.)
A LOW-to-HIGH transition on CLKB writes B0-B35 data to the Mail2
Register when a Port B write is selected by
CSB, W/RB, and ENB with MBB
HIGH. If the selected Port B bus size is also 36 bits, then the usable width of
the Mail2 employs data lines B0-B35. If the selected Port B bus size is 18 bits,
then the usable width of the Mail2 Register employs data lines B0-B17. (In this
case, B18-B35 are don’t care inputs.) If the selected Port B bus size is 9 bits,
then the usable width of the Mail2 Register employs data lines B0-B8. (In this
case, B9-B35 are don’t care inputs.)
Writing data to a mail register sets its corresponding flag (
MBF1or MBF2)
LOW.AttemptedwritestoamailregisterareignoredwhilethemailflagisLOW.
When data outputs of a port are active, the data on the bus comes from the
FIFO output register when the port Mailbox select input is LOW and from the
mail register when the port Mailbox select input is HIGH.
The Mail1 Register Flag (
MBF1)issetHIGHbyaLOW-to-HIGHtransition
on CLKB when a Port B read is selected by
CSB, W/RB, and ENB with MBB
HIGH. For a 36-bit bus size, 36 bits of mailbox data are placed on B0-B35.
For an 18-bit bus size, 18 bits of mailbox data are placed on B0-B17. (In this
case, B18-B35 are indeterminate.) For a 9-bit bus size, 9 bits of mailbox data
are placed on B0-B8. (In this case, B9-B35 are indeterminate.)
The Mail2 Register Flag (
MBF2)issetHIGHbyaLOW-to-HIGHtransition
on CLKA when a Port A read is selected by
CSA, W/RA, and ENA with MBA
HIGH.
For a 36-bit bus size, 36 bits of mailbox data are placed on A0-A35. For
an 18-bit bus size, 18 bits of mailbox data are placed on A0-A17. (In this case,
A18-A35 are indeterminate.) For a 9-bit bus size, 9 bits of mailbox data are
placed on A0-A8. (In this case, A9-A35 are indeterminate.)
The data in a mail register remains intact after it is read and changes only
whennewdataiswrittentotheregister.TheEndianselectfeaturehasnoeffect
on mailbox data. For mail register and Mail Register Flag timing diagrams, see
Figure 27 and 28.
BUS SIZING
The Port B bus can be configured in a 36-bit long word, 18-bit word, or
9-bit byte format for data read from FIFO1 or written to FIFO2. The levels
applied to the Port B Bus Size select (SIZE) and the Bus-Match select (BM)
determine the Port B bus size. These levels should be static throughout FIFO
operation. Both bus size selections are implemented at the completion of
Master Reset, by the time the Full/Input Ready flag is set HIGH, as shown in
Figure 2.
Two different methods for sequencing data transfer are available for Port
B when the bus size selection is either byte- or word-size. They are referred
to as Big-Endian (most significant byte first) and Little-Endian (least significant
bytefirst).ThelevelappliedtotheBig-Endianselect(BE)inputduringtheLOW-
to-HIGH transition of
MRS1andMRS2selectstheendianmethodthatwillbe
active during FIFO operation. BE is a don’t care input when the bus size
selected for Port B is long word. The endian method is implemented at the
completion of Master Reset, by the time the Full/Input Ready flag is set HIGH,
as shown in Figure 2.
Only 36-bit long word data is written to or read from the two FIFO memories
on the IDT72V3654/72V3664/72V3674. Bus-matching operations are done
after data is read from the FIFO1 RAM and before data is written to the FIFO2
RAM. These bus-matching operations are not available when transferring
data via mailbox registers. Furthermore, both the word- and byte-size bus
selections limit the width of the data bus that can be used for mail register
operations. In this case, only those byte lanes belonging to the selected word-
or byte-size bus can carry mailbox data. The remaining data outputs will be
indeterminate. The remaining data inputs will be don’t care inputs. For
example, when a word-size bus is selected, then mailbox data can be
transmitted only between A0-A17 and B0-B17. When a byte-size bus is
selected, then mailbox data can be transmitted only between A0-A8 and B0-
B8. (See Figures 27 and 28).
BUS-MATCHING FIFO1 READS
Data is read from the FIFO1 RAM in 36-bit long word increments. If a long
word bus size is implemented, the entire long word immediately shifts to the
FIFO1 output register. If byte or word size is implemented on Port B, only the
firstoneortwobytesappearontheselectedportionoftheFIFO1outputregister,
with the rest of the long word stored in auxiliary registers. In this case,
subsequent FIFO1 reads output the rest of the long word to the FIFO1 output
register in the order shown by Figure 2.
When reading data from FIFO1 in byte or word format, the unused B0-B35
outputsareindeterminate.
BUS-MATCHING FIFO2 WRITES
DataiswrittentotheFIFO2RAMin36-bitlongwordincrements.Datawritten
toFIFO2withabyteorwordbussizestorestheinitialbytesorwordsinauxiliary
registers. The CLKB rising edge that writes the fourth byte or the second word
of long word to FIFO2 also stores the entire long word in the FIFO2 memory.
The bytes are arranged in the manner shown in Figure 2.
WhenwritingdatatoFIFO2inbyteorwordformat,theunusedB0-B35inputs
are don't care inputs.
相关PDF资料
PDF描述
V48B12M250BL3 CONVERTER MOD DC/DC 12V 250W
V48B12M250BL CONVERTER MOD DC/DC 12V 250W
IDT72V3653L15PF IC SYNCFIFO 2048X36 15NS 128TQFP
IDT82P2521BH IC LIU E1 21+1CH SHORT 640-PBGA
IDT72V3652L15PQF IC BI FIFO 4096X36 15NS 132QFP
相关代理商/技术参数
参数描述
IDT72V3654L15PF8 功能描述:IC BI FIFO 4096X36 15NS 128QFP RoHS:否 类别:集成电路 (IC) >> 逻辑 - FIFO 系列:72V 标准包装:90 系列:7200 功能:同步 存储容量:288K(16K x 18) 数据速率:100MHz 访问时间:10ns 电源电压:4.5 V ~ 5.5 V 工作温度:0°C ~ 70°C 安装类型:表面贴装 封装/外壳:64-LQFP 供应商设备封装:64-TQFP(14x14) 包装:托盘 其它名称:72271LA10PF
IDT72V3656L10PF 功能描述:IC SYNC FIFO 4096X36 10NS 128QFP RoHS:否 类别:集成电路 (IC) >> 逻辑 - FIFO 系列:72V 标准包装:90 系列:7200 功能:同步 存储容量:288K(16K x 18) 数据速率:100MHz 访问时间:10ns 电源电压:4.5 V ~ 5.5 V 工作温度:0°C ~ 70°C 安装类型:表面贴装 封装/外壳:64-LQFP 供应商设备封装:64-TQFP(14x14) 包装:托盘 其它名称:72271LA10PF
IDT72V3656L10PF8 功能描述:IC SYNC FIFO 4096X36 10NS 128QFP RoHS:否 类别:集成电路 (IC) >> 逻辑 - FIFO 系列:72V 标准包装:90 系列:7200 功能:同步 存储容量:288K(16K x 18) 数据速率:100MHz 访问时间:10ns 电源电压:4.5 V ~ 5.5 V 工作温度:0°C ~ 70°C 安装类型:表面贴装 封装/外壳:64-LQFP 供应商设备封装:64-TQFP(14x14) 包装:托盘 其它名称:72271LA10PF
IDT72V3656L10PFI 制造商:Integrated Device Technology Inc 功能描述:IC SYNC FIFO 4096X36 10NS 128QFP
IDT72V3656L10PFI8 制造商:Integrated Device Technology Inc 功能描述:IC SYNC FIFO 4096X36 10NS 128QFP