参数资料
型号: ISL6313IRZ
厂商: Intersil
文件页数: 11/33页
文件大小: 0K
描述: IC CTRLR PWM 2PHASE BUCK 36-QFN
产品培训模块: Solutions for Industrial Control Applications
标准包装: 50
应用: 控制器,Intel VR11,AMD CPU
输入电压: 5 V ~ 12 V
输出数: 1
输出电压: 0.5 V ~ 1.6 V
工作温度: -40°C ~ 85°C
安装类型: 表面贴装
封装/外壳: 36-WFQFN 裸露焊盘
供应商设备封装: 36-TQFN 裸露焊盘(6x6)
包装: 管件
ISL6313
The output capacitors conduct the ripple component of the
inductor current. In the case of multi-phase converters, the
capacitor current is the sum of the ripple currents from each
of the individual channels. Compare Equation 1 to the
expression for the peak-to-peak current after the summation
of N symmetrically phase-shifted inductor currents in
Equation 2. Peak-to-peak ripple current decreases by an
amount proportional to the number of channels. Output
voltage ripple is a function of capacitance, capacitor
equivalent series resistance (ESR), and inductor ripple
current. Reducing the inductor ripple current allows the
designer to use fewer or less costly output capacitors.
which a PWM signal can occur is generated by an internal
clock, whose cycle time is the inverse of the switching
frequency set by the resistor connected to the FS pin. The
advantage of Intersil’s proprietary Active Pulse Positioning
(APP) modulator is that the PWM signal has the ability to
turn on at any point during this PWM time interval, and turn
off immediately after the PWM signal has transitioned high.
This is important because it allows the controller to quickly
respond to output voltage drops associated with current load
spikes, while avoiding the ring back affects associated with
other modulation schemes.
The PWM output state is driven by the position of the error
L ? f S ? V
( V IN – N ? V OUT ) ? V OUT
I C ( P-P ) = --------------------------------------------------------------------
IN
(EQ. 2)
amplifier output signal, V COMP minus the current correction
signal relative to the proprietary modulator ramp waveform
Another benefit of interleaving is to reduce input ripple
current. Input capacitance is determined in part by the
maximum input ripple current. Multiphase topologies can
improve overall system cost and size by lowering input ripple
current and allowing the designer to reduce the cost of input
capacitance. The example in Figure 2 illustrates input
currents from a three-phase converter combining to reduce
the total input ripple current.
The converter depicted in Figure 2 delivers 1.5V to a 36A load
from a 12V input. The RMS input capacitor current is 5.9A.
Compare this to a single-phase converter also stepping down
12V to 1.5V at 36A. The single-phase converter has
11.9A RMS input capacitor current. The single-phase converter
must use an input capacitor bank with twice the RMS current
capacity as the equivalent three-phase converter.
INPUT-CAPACITOR CURRENT, 10A/DIV
as illustrated in Figure 4. At the beginning of each PWM time
interval, this modified V COMP signal is compared to the
internal modulator waveform. As long as the modified
V COMP voltage is lower then the modulator waveform
voltage, the PWM signal is commanded low. The internal
MOSFET driver detects the low state of the PWM signal and
turns off the upper MOSFET and turns on the lower
synchronous MOSFET. When the modified V COMP voltage
crosses the modulator ramp, the PWM output transitions
high, turning off the synchronous MOSFET and turning on
the upper MOSFET. The PWM signal will remain high until
the modified V COMP voltage crosses the modulator ramp
again. When this occurs the PWM signal will transition low
again.
During each PWM time interval the PWM signal can only
transition high once. Once PWM transitions high it can not
transition high again until the beginning of the next PWM
time interval. This prevents the occurrence of double PWM
pulses occurring during a single period.
CHANNEL 3
INPUT CURRENT
EXTERNAL CIRCUIT
ISL6313 INTERNAL CIRCUIT
APA
CHANNEL 2
INPUT CURRENT
CHANNEL 1
INPUT CURRENT
C APA
R APA
V APA,TRIP
COMP
100μA
LOW
PASS
FILTER
+
-
APA
TO APA
CIRCUITRY
1μs/DIV
FIGURE 2. CHANNEL INPUT CURRENTS AND
INPUT-CAPACITOR RMS CURRENT FOR
3-PHASE CONVERTER
Active Pulse Positioning (APP) Modulated PWM
Operation
The ISL6313 uses a proprietary Active Pulse Positioning
(APP) modulation scheme to control the internal PWM
signals that command each channel’s driver to turn their
upper and lower MOSFETs on and off. The time interval in
11
ERROR
AMPLIFIER
FIGURE 3. ADAPTIVE PHASE ALIGNMENT DETECTION
Adaptive Phase Alignment (APA)
To further improve the transient response, the ISL6313 also
implements Intersil’s proprietary Adaptive Phase Alignment
(APA) technique, which turns on all of the channels together
at the same time during large current step transient events.
FN6448.2
September 2, 2008
相关PDF资料
PDF描述
ISL6314IRZ IC CTRLR PWM 1PHASE BUCK 32-QFN
ISL6315IRZ IC REG CTRLR BUCK PWM VM 24-QFN
ISL6316IRZ IC REG CTRLR BUCK PWM VM 40-QFN
ISL6322GIRZ-T IC CTRLR PWM BUCK 48-QFN
ISL6322IRZ IC CTRLR PWM 4PHASE BUCK 48-QFN
相关代理商/技术参数
参数描述
ISL6313IRZ-T 功能描述:IC CTRLR PWM 2PHASE BUCK 36-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - 专用型 系列:- 标准包装:43 系列:- 应用:控制器,Intel VR11 输入电压:5 V ~ 12 V 输出数:1 输出电压:0.5 V ~ 1.6 V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:48-VFQFN 裸露焊盘 供应商设备封装:48-QFN(7x7) 包装:管件
ISL6314CRZ 功能描述:电压模式 PWM 控制器 1-PH PWM CNTRLR W/1 INTEGRTD DRVRS 32LD RoHS:否 制造商:Texas Instruments 输出端数量:1 拓扑结构:Buck 输出电压:34 V 输出电流: 开关频率: 工作电源电压:4.5 V to 5.5 V 电源电流:600 uA 最大工作温度:+ 125 C 最小工作温度:- 40 C 封装 / 箱体:WSON-8 封装:Reel
ISL6314CRZ-T 功能描述:IC CTRLR PWM 1PHASE BUCK 32-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - 专用型 系列:- 标准包装:43 系列:- 应用:控制器,Intel VR11 输入电压:5 V ~ 12 V 输出数:1 输出电压:0.5 V ~ 1.6 V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:48-VFQFN 裸露焊盘 供应商设备封装:48-QFN(7x7) 包装:管件
ISL6314CRZ-TR5453 制造商:Intersil Corporation 功能描述:STD. ISL6314CRZ-T W/GOLD BOND WIRE ONLY T&R - Tape and Reel
ISL6314CRZ-TS2568 制造商:Intersil Corporation 功能描述:- Tape and Reel