参数资料
型号: ISL6564AIRZ
厂商: Intersil
文件页数: 26/28页
文件大小: 0K
描述: IC REG CTRLR BUCK PWM VM 40-QFN
标准包装: 500
PWM 型: 电压模式
输出数: 1
频率 - 最大: 1.5MHz
占空比: 66.7%
电源电压: 4.75 V ~ 5.25 V
降压:
升压:
回扫:
反相:
倍增器:
除法器:
Cuk:
隔离:
工作温度: -40°C ~ 85°C
封装/外壳: 40-VFQFN 裸露焊盘
包装: 管件
ISL6564A
and off. Select low ESL ceramic capacitors and place one as
close as possible to each upper MOSFET drain to minimize
board parasitic impedances and maximize suppression.
Layout Considerations
The following layout strategies are intended to minimize the
impact of board parasitic impedances on converter
0.3
I L,PP = 0
I L,PP = 0.25 I O
I L,PP = 0.5 I O
I L,PP = 0.75 I O
performance and to optimize the heat-dissipating capabilities
of the printed-circuit board. These sections highlight some
important practices which should not be overlooked during the
layout process.
0.2
0.1
Component Placement
Within the allotted implementation area, orient the switching
components first. The switching components are the most
critical because they carry large amounts of energy and tend
to generate high levels of noise. Switching component
placement should take into account power dissipation. Align
the output inductors and MOSFETs such that space between
the components is minimized while creating the PHASE
plane. Place the Intersil MOSFET driver IC as close as
0
0
0.2
0.4
0.6
0.8
1.0
possible to the MOSFETs they control to reduce the parasitic
DUTY CYCLE (V O/ V IN )
FIGURE 23. NORMALIZED INPUT-CAPACITOR RMS CURRENT
vs DUTY CYCLE FOR 4-PHASE CONVERTER
MULTIPHASE RMS IMPROVEMENT
Figure 24 is provided as a reference to demonstrate the
dramatic reductions in input-capacitor RMS current upon the
implementation of the multiphase topology. For example,
compare the input RMS current requirements of a two-phase
converter versus that of a single phase. Assume both
converters have a duty cycle of 0.25, maximum sustained
output current of 40A, and a ratio of I L,PP to I O of 0.5. The
single phase converter would require 17.3 Arms current
capacity while the two-phase converter would only require
10.9 Arms. The advantages become even more pronounced
when output current is increased and additional phases are
added to keep the component cost down relative to the
single phase approach.
0.6
0.4
0.2
I L,PP = 0
I L,PP = 0.5 I O
I L,PP = 0.75 I O
impedances due to trace length between critical driver input
and output signals. If possible, duplicate the same
placement of these components for each phase.
Next, place the input and output capacitors. Position one
high-frequency ceramic input capacitor next to each upper
MOSFET drain. Place the bulk input capacitors as close to
the upper MOSFET drains as dictated by the component
size and dimensions. Long distances between input
capacitors and MOSFET drains result in too much trace
inductance and a reduction in capacitor performance. Locate
the output capacitors between the inductors and the load,
while keeping them in close proximity to the microprocessor
socket.
The ISL6564A can be placed off to one side or centered
relative to the individual phase switching components.
Routing of sense lines and PWM signals will guide final
placement. Critical small signal components to place close
to the controller include the ISEN resistors, R T resistor,
feedback resistor, and compensation components.
Bypass capacitors for the ISL6564A and ISL66XX driver
bias supplies must be placed next to their respective pins.
Trace parasitic impedances will reduce their effectiveness.
Plane Allocation and Routing
Dedicate one solid layer, usually a middle layer, for a ground
plane. Make all critical component ground connections with
vias to this plane. Dedicate one additional layer for power
planes; breaking the plane up into smaller islands of
common voltage. Use the remaining layers for signal wiring.
Route phase planes of copper filled polygons on the top and
bottom once the switching component placement is set. Size
0
0
0.2
0.4
0.6
0.8
1.0
the trace width between the driver gate pins and the
DUTY CYCLE (V O/ V IN )
FIGURE 24. NORMALIZED INPUT-CAPACITOR RMS
CURRENT vs DUTY CYCLE FOR SINGLE-PHASE
CONVERTER
26
MOSFET gates to carry 4A of current. When routing
components in the switching path, use short wide traces to
reduce the associated parasitic impedances.
FN6285.1
March 20, 2007
相关PDF资料
PDF描述
ISL6564IR-T IC REG CTRLR BUCK PWM VM 40-QFN
ISL6565BCV-T IC REG CTRLR BUCK PWM VM 28TSSOP
ISL6566AIRZ IC CTRLR PWM 3PHASE BUCK 40-QFN
ISL6566CRZ-T IC CTLR PWM BUCK 3PHASE 40-QFN
ISL6567CRZ IC REG CTRLR BUCK PWM VM 24-QFN
相关代理商/技术参数
参数描述
ISL6564AIRZ-T 功能描述:IC REG CTRLR BUCK PWM VM 40-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:2,500 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:275kHz 占空比:50% 电源电压:18 V ~ 110 V 降压:无 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:是 工作温度:-40°C ~ 85°C 封装/外壳:8-SOIC(0.154",3.90mm 宽) 包装:带卷 (TR)
ISL6564CR 功能描述:IC REG CTRLR BUCK PWM VM 40-QFN RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:4,000 系列:- PWM 型:电压模式 输出数:1 频率 - 最大:1.5MHz 占空比:66.7% 电源电压:4.75 V ~ 5.25 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 85°C 封装/外壳:40-VFQFN 裸露焊盘 包装:带卷 (TR)
ISL6564CR-T 功能描述:IC REG CTRLR BUCK PWM VM 40-QFN RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 标准包装:4,000 系列:- PWM 型:电压模式 输出数:1 频率 - 最大:1.5MHz 占空比:66.7% 电源电压:4.75 V ~ 5.25 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 85°C 封装/外壳:40-VFQFN 裸露焊盘 包装:带卷 (TR)
ISL6564CRZ 功能描述:电流型 PWM 控制器 LEAD-FREE MULTI-PHASE PWM CONTROLLER W/ 0.525-1.3 VID RoHS:否 制造商:Texas Instruments 开关频率:27 KHz 上升时间: 下降时间: 工作电源电压:6 V to 15 V 工作电源电流:1.5 mA 输出端数量:1 最大工作温度:+ 105 C 安装风格:SMD/SMT 封装 / 箱体:TSSOP-14
ISL6564CRZ-T 功能描述:电流型 PWM 控制器 LEAD-FREE MULTI-PHASE PWM CONTROLLER W/ 0.525-1.3 VID, T&R RoHS:否 制造商:Texas Instruments 开关频率:27 KHz 上升时间: 下降时间: 工作电源电压:6 V to 15 V 工作电源电流:1.5 mA 输出端数量:1 最大工作温度:+ 105 C 安装风格:SMD/SMT 封装 / 箱体:TSSOP-14