参数资料
型号: LTC3730CG#TR
厂商: Linear Technology
文件页数: 15/28页
文件大小: 0K
描述: IC CTRLR BUCK POLYPHASE 36-SSOP
标准包装: 2,000
应用: 控制器,Intel 移动式 VID
输入电压: 4 V ~ 36 V
输出数: 1
输出电压: 0.6 V ~ 1.75 V
工作温度: 0°C ~ 70°C
安装类型: 表面贴装
封装/外壳: 36-SSOP(0.209",5.30mm 宽)
供应商设备封装: 36-SSOP
包装: 带卷 (TR)
LTC3730
APPLICATIO S I FOR ATIO
rations with the output voltage fixed and input voltage
varied. The input ripple current is normalized against the
DC output current. The graph can be used in place of
tedious calculations. The minimum input ripple current
can be achieved when the product of phase number and
output voltage, N(V OUT ), is approximately equal to the
input voltage V IN or:
of stages used. It is important to note that the efficiency
loss is proportional to the input RMS current squared and
therefore a 3-stage implementation results in 90% less
power loss when compared to a single phase design.
Battery/input protection fuse resistance (if used), PC
board trace and connector resistance losses are also
reduced by the reduction of the input ripple current in a
PolyPhase system. The required amount of input capaci-
V OUT
V IN
=
k
N
where k = 1 , 2 , ..., N – 1
tance is further reduced by the factor, N, due to the
effective increase in the frequency of the current pulses.
So the phase number can be chosen to minimize the input
capacitor size for the given input and output voltages.
In the graph of Figure 4, the local maximum input RMS
capacitor currents are reached when:
Ceramic capacitors are becoming very popular for small
designs but several cautions should be observed. “X7R”,
“X5R” and “Y5V” are examples of a few of the ceramic
materials used as the dielectric layer, and these different
dielectrics have very different effect on the capacitance
V OUT
V IN
=
2 k – 1
N
where k = 1 , 2 , ..., N
value due to the voltage and temperature conditions
applied. Physically, if the capacitance value changes due
to applied voltage change, there is a concommitant piezo
These worst-case conditions are commonly used for de-
sign because even significant deviations do not offer much
relief. Note that capacitor manufacturer’s ripple current
ratings are often based on only 2000 hours of life. This
makes it advisable to further derate the capacitor or to
choose a capacitor rated at a higher temperature than re-
quired. Several capacitors may also be paralleled to meet
size or height requirements in the design. Always consult
the capacitor manufacturer if there is any question.
The Figure 6 graph shows that the peak RMS input current
is reduced linearly, inversely proportional to the number N
0.6
0.5
effect which results in radiating sound! A load that draws
varying current at an audible rate may cause an attendant
varying input voltage on a ceramic capacitor, resulting in
an audible signal. A secondary issue relates to the energy
flowing back into a ceramic capacitor whose capacitance
value is being reduced by the increasing charge. The
voltage can increase at a considerably higher rate than the
constant current being supplied because the capacitance
value is decreasing as the voltage is increasing! Neverthe-
less, ceramic capacitors, when properly selected and
used, can provide the lowest overall loss due to their
extremely low ESR.
The selection of C OUT is driven by the required effective
series resistance (ESR). Typically once the ESR require-
0.4
1-PHASE
2-PHASE
3-PHASE
ment is satisfied the capacitance is adequate for filtering.
The steady-state output ripple ( ? V OUT ) is determined by:
? V OUT RIPPLE ? ESR +
≈ ? I
8 NfC OUT ?
0.3
0.2
4-PHASE
6-PHASE
?
?
1 ?
?
0.1
where f = operating frequency of each stage, N is the
0
0.1
0.2
0.3 0.4 0.5 0.6 0.7
DUTY FACTOR (V OUT /V IN )
0.8 0.9
3730 F06
number of output stages, C OUT = output capacitance and
? I L = ripple current in each inductor. The output ripple is
highest at maximum input voltage since ? I L increases
Figure 6. Normalized Input RMS Ripple Current
vs Duty Factor for One to Six Output Stages
with input voltage. The output ripple will be less than 50mV
at max V IN with ? I L = 0.4I OUT(MAX) assuming:
3730fa
15
相关PDF资料
PDF描述
EEM40DTAT-S189 CONN EDGECARD 80POS R/A .156 SLD
AMC18DRTS CONN EDGECARD 36POS .100 DIP SLD
RSM12DRKI-S13 CONN EDGECARD 24POS .156 EXTEND
RBC65DREH-S13 CONN EDGECARD 130PS .100 EXTEND
LT1182CS IC SW REG CCFL/LCD CONTRST16SOIC
相关代理商/技术参数
参数描述
LTC3731CG 功能描述:IC REG CTRLR BUCK PWM CM 36-SSOP RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:PolyPhase® 标准包装:4,500 系列:PowerWise® PWM 型:控制器 输出数:1 频率 - 最大:1MHz 占空比:95% 电源电压:2.8 V ~ 5.5 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:6-WDFN 裸露焊盘 包装:带卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名称:LM1771SSDX
LTC3731CG#PBF 功能描述:IC REG CTRLR BUCK PWM CM 36-SSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:PolyPhase® 特色产品:LM3753/54 Scalable 2-Phase Synchronous Buck Controllers 标准包装:1 系列:PowerWise® PWM 型:电压模式 输出数:1 频率 - 最大:1MHz 占空比:81% 电源电压:4.5 V ~ 18 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-5°C ~ 125°C 封装/外壳:32-WFQFN 裸露焊盘 包装:Digi-Reel® 产品目录页面:1303 (CN2011-ZH PDF) 其它名称:LM3754SQDKR
LTC3731CG#TR 功能描述:IC REG CTRLR BUCK PWM CM 36-SSOP RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:PolyPhase® 标准包装:4,500 系列:PowerWise® PWM 型:控制器 输出数:1 频率 - 最大:1MHz 占空比:95% 电源电压:2.8 V ~ 5.5 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:6-WDFN 裸露焊盘 包装:带卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名称:LM1771SSDX
LTC3731CG#TRPBF 功能描述:IC REG CTRLR BUCK PWM CM 36-SSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:PolyPhase® 标准包装:4,500 系列:PowerWise® PWM 型:控制器 输出数:1 频率 - 最大:1MHz 占空比:95% 电源电压:2.8 V ~ 5.5 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:6-WDFN 裸露焊盘 包装:带卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名称:LM1771SSDX
LTC3731CUH 功能描述:IC REG CTRLR BUCK PWM CM 32-QFN RoHS:否 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:PolyPhase® 标准包装:4,500 系列:PowerWise® PWM 型:控制器 输出数:1 频率 - 最大:1MHz 占空比:95% 电源电压:2.8 V ~ 5.5 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:6-WDFN 裸露焊盘 包装:带卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名称:LM1771SSDX