参数资料
型号: LTC3850IGN-2#TRPBF
厂商: Linear Technology
文件页数: 23/36页
文件大小: 0K
描述: IC REG CTRLR BUCK PWM CM 28-SSOP
产品培训模块: LTC3850 Dual Output DC/DC Switching Regulator Controller
标准包装: 2,500
系列: PolyPhase®
PWM 型: 电流模式
输出数: 2
频率 - 最大: 860kHz
占空比: 97.2%
电源电压: 4 V ~ 30 V
降压:
升压:
回扫:
反相:
倍增器:
除法器:
Cuk:
隔离:
工作温度: -40°C ~ 85°C
封装/外壳: 28-SSOP(0.154",3.90mm 宽)
包装: 带卷 (TR)
LTC3850-2
APPLICATIONS INFORMATION
on the current sense signal. The minimum on-time can be
affected by PCB switching noise in the voltage and current
loop. As the peak sense voltage decreases the minimum
on-time gradually increases to 130ns. This is of particular
concern in forced continuous applications with low ripple
current at light loads. If the duty cycle drops below the
minimum on-time limit in this situation, a signi?cant
amount of cycle skipping can occur with correspondingly
larger current and voltage ripple.
Ef?ciency Considerations
The percent ef?ciency of a switching regulator is equal to
the output power divided by the input power times 100%.
It is often useful to analyze individual losses to determine
what is limiting the ef?ciency and which change would
produce the most improvement. Percent ef?ciency can
be expressed as:
%Ef?ciency = 100% – (L1 + L2 + L3 + ...)
where L1, L2, etc. are the individual losses as a percent-
age of input power.
Although all dissipative elements in the circuit produce
losses, four main sources usually account for most of the
losses in LTC3850-2 circuits: 1) IC V IN current, 2) INTV CC
regulator current, 3) I 2 R losses, 4) Topside MOSFET
transition losses.
1. The V IN current is the DC supply current given in
the Electrical Characteristics table, which excludes
MOSFET driver and control currents. V IN current typi-
cally results in a small (<0.1%) loss.
2. INTV CC current is the sum of the MOSFET driver and
control currents. The MOSFET driver current results
from switching the gate capacitance of the power
MOSFETs. Each time a MOSFET gate is switched from
low to high to low again, a packet of charge dQ moves
from INTV CC to ground. The resulting dQ/dt is a cur-
rent out of INTV CC that is typically much larger than the
control circuit current. In continuous mode, I GATECHG
= f(Q T + Q B ), where Q T and Q B are the gate charges of
the topside and bottom side MOSFETs.
Supplying INTV CC power through EXTV CC from an out-
put-derived source will scale the V IN current required
for the driver and control circuits by a factor of (Duty
Cycle)/(Ef?ciency). For example, in a 20V to 5V applica-
tion, 10mA of INTV CC current results in approximately
2.5mA of V IN current. This reduces the mid-current loss
from 10% or more (if the driver was powered directly
from V IN ) to only a few percent.
3. I 2 R losses are predicted from the DC resistances of the
fuse (if used), MOSFET, inductor, current sense resistor.
In continuous mode, the average output current ?ows
through L and R SENSE , but is “chopped” between the
topside MOSFET and the synchronous MOSFET. If the
two MOSFETs have approximately the same R DS(ON) ,
then the resistance of one MOSFET can simply be
summed with the resistances of L and R SENSE to obtain
I 2 R losses. For example, if each R DS(ON) = 10mΩ, R L
= 10mΩ, R SENSE = 5mΩ, then the total resistance is
25mΩ. This results in losses ranging from 2% to 8%
as the output current increases from 3A to 15A for
a 5V output, or a 3% to 12% loss for a 3.3V output.
Ef?ciency varies as the inverse square of V OUT for the
same external components and output power level. The
combined effects of increasingly lower output voltages
and higher currents required by high performance digital
systems is not doubling but quadrupling the importance
of loss terms in the switching regulator system!
4. Transition losses apply only to the topside MOSFET(s),
and become signi?cant only when operating at high
input voltages (typically 15V or greater). Transition
losses can be estimated from:
Transition Loss = (1.7) V IN2 I O(MAX) C RSS f
Other “hidden” losses such as copper trace and internal
battery resistances can account for an additional 5% to
10% ef?ciency degradation in portable systems. It is
very important to include these “system” level losses
during the design phase. The internal battery and fuse
resistance losses can be minimized by making sure that
C IN has adequate charge storage and very low ESR at the
switching frequency. A 25W supply will typically require
38502f
23
相关PDF资料
PDF描述
LTC3850IGN#PBF IC REG CTRLR BUCK PWM CM 28-SSOP
LTC3851EGN#PBF IC REG CTRLR BUCK PWM CM 16-SSOP
LTC3851EMSE-1#PBF IC REG CTRLR BUCK PWM CM 16-MSOP
LTC3852EUDD#PBF IC REG CTRLR DOUBLER PWM 24-QFN
LTC3853EUJ#PBF IC REG CTRLR BUCK PWM CM 40-QFN
相关代理商/技术参数
参数描述
LTC3850IUF#PBF 功能描述:IC REG CTRLR BUCK PWM CM 28-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:PolyPhase® 标准包装:4,500 系列:PowerWise® PWM 型:控制器 输出数:1 频率 - 最大:1MHz 占空比:95% 电源电压:2.8 V ~ 5.5 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:6-WDFN 裸露焊盘 包装:带卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名称:LM1771SSDX
LTC3850IUF#TRPBF 功能描述:IC REG CTRLR BUCK PWM CM 28-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:PolyPhase® 标准包装:2,500 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:500kHz 占空比:96% 电源电压:4 V ~ 36 V 降压:无 升压:是 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:24-WQFN 裸露焊盘 包装:带卷 (TR)
LTC3850IUFD#PBF 功能描述:IC REG CTRLR BUCK PWM CM 28-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:PolyPhase® 标准包装:2,000 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:1MHz 占空比:50% 电源电压:9 V ~ 10 V 降压:无 升压:是 回扫:是 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 85°C 封装/外壳:8-TSSOP(0.173",4.40mm 宽) 包装:带卷 (TR)
LTC3850IUFD#TRPBF 功能描述:IC REG CTRLR BUCK PWM CM 28-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:PolyPhase® 标准包装:2,500 系列:- PWM 型:电流模式 输出数:1 频率 - 最大:500kHz 占空比:96% 电源电压:4 V ~ 36 V 降压:无 升压:是 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-40°C ~ 125°C 封装/外壳:24-WQFN 裸露焊盘 包装:带卷 (TR)
LTC3851AEGN#PBF 功能描述:IC REG CTRLR BUCK PWM CM 16-SSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - DC DC 切换控制器 系列:- 特色产品:LM3753/54 Scalable 2-Phase Synchronous Buck Controllers 标准包装:1 系列:PowerWise® PWM 型:电压模式 输出数:1 频率 - 最大:1MHz 占空比:81% 电源电压:4.5 V ~ 18 V 降压:是 升压:无 回扫:无 反相:无 倍增器:无 除法器:无 Cuk:无 隔离:无 工作温度:-5°C ~ 125°C 封装/外壳:32-WFQFN 裸露焊盘 包装:Digi-Reel® 产品目录页面:1303 (CN2011-ZH PDF) 其它名称:LM3754SQDKR