参数资料
型号: MBM29F017A-90PFTN
厂商: SPANSION LLC
元件分类: PROM
英文描述: 2M X 8 FLASH 5V PROM, 90 ns, PDSO48
封装: PLASTIC, TSOP1-48
文件页数: 8/49页
文件大小: 520K
代理商: MBM29F017A-90PFTN
MBM29F017A-70/-90/-12
15
Read/Reset Command
The read or reset operation is initiated by writing the read/reset command sequence into the command register.
Microprocessor read cycles retrieve array data from the memory. The device remains enabled for reads until the
command register contents are altered.
The device will automatically power-up in the read/reset state. In this case, a command sequence is not required
to read data. Standard microprocessor read cycles will retrieve array data. This default value ensures that no
spurious alteration of the memory content occurs during the power transition. Refer to the AC Read Character-
istics and Waveforms for the specific timing parameters.
Autoselect Command
Flash memories are intended for use in applications where the local CPU alters memory contents. As such,
manufacture and device codes must be accessible while the device resides in the target system. PROM pro-
grammers typically access the signature codes by raising A9 to a high voltage. However, multiplexing high voltage
onto the address lines is not generally desirable system design practice.
The device contains an autoselect command operation to supplement traditional PROM programming method-
ology. The operation is initiated by writing the autoselect command sequence into the command register. Fol-
lowing the command write, a read cycle from address XX00h retrieves the manufacture code of 04h. A read
cycle from address XX01h returns the device code ADh. (See “MBM29F017A Sector Protection Verify Autoselect
Codes” in sDEVICE BUS OPERATION.)
All manufacturer and device codes will exhibit odd parity with the DQ7 defined as the parity bit.
Sector state (protection or unprotection) will be informed by address XX02h.
Scanning the sector group addresses (A18, A19, A20) while (A6, A1, A0) = (0, 1, 0) will produce a logical “1” at
device output DQ0 for a protected sector group.
To terminate the operation, it is necessary to write the read/reset command sequence into the register and also
to write the autoselect command during the operation, execute it after writing read/reset command sequence.
Byte Programming
The device is programmed on a byte-by-byte basis. Programming is a four bus cycle operation. There are two
“unlock” write cycles. These are followed by the program set-up command and data write cycles. Addresses are
latched on the falling edge of CE or WE, whichever happens later and the data is latched on the rising edge of
CE or WE, whichever happens first. The rising edge of CE or WE (whichever happens first) begins programming.
Upon executing the Embedded ProgramTM Algorithm command sequence, the system is
not required to provide
further controls or timings. The device will automatically provide adequate internally generated program pulses
and verify the programmed cell margin.
This automatic programming operation is completed when the data on DQ7 is equivalent to data written to this
bit at which time the device returns to the read mode and addresses are no longer latched. (See “Hardware
Sequence Flags”.) Therefore, the device requires that a valid address to the device be supplied by the system
at this particular instance of time. Data Polling must be performed at the memory location which is being
programmed.
Any commands written to the chip during this period will be ignored. If a hardware reset occurs during the
programming operation, it is impossible to guarantee the data are being written.
Programming is allowed in any sequence and across sector boundaries. Beware that a data “0” cannot be
programmed back to a “1”. Attempting to do so may either hang up the device or result in an apparent success
according to the data polling algorithm but a read from reset/read mode will show that the data is still “0”. Only
erase operations can convert “0”s to “1”s.
“DQ2 vs. DQ6” in sTIMING DIAGRAM illustrates the Embedded Programming Algorithm using typical command
strings and bus operations.
相关PDF资料
PDF描述
MBM29LV160BE12PBT-E1 2M X 8 FLASH 3V PROM, 120 ns, PBGA48
MBM29LV200B-10PFTR 256K X 8 FLASH 3V PROM, 100 ns, PDSO48
MBM29LV800BE70TN 512K X 16 FLASH 3V PROM, 70 ns, PDSO48
MBPL1319B-1R2-KS 1 ELEMENT, 1.2 uH, GENERAL PURPOSE INDUCTOR
MBPL1319B-R30-KS 1 ELEMENT, 0.3 uH, GENERAL PURPOSE INDUCTOR
相关代理商/技术参数
参数描述
MBM29F017A-90PFTR 制造商:FUJITSU 制造商全称:Fujitsu Component Limited. 功能描述:16M (2M X 8) BIT
MBM29F017A-90PNS 制造商:FUJITSU 制造商全称:Fujitsu Component Limited. 功能描述:16M (2M X 8) BIT
MBM29F033C 制造商:FUJITSU 制造商全称:Fujitsu Component Limited. 功能描述:32M (4M X 8) BIT
MBM29F033C-12 制造商:FUJITSU 制造商全称:Fujitsu Component Limited. 功能描述:32M (4M X 8) BIT
MBM29F033C-12PTN 制造商:FUJITSU 制造商全称:Fujitsu Component Limited. 功能描述:32M (4M X 8) BIT