参数资料
型号: XC3S1200E-5FGG400C
厂商: Xilinx Inc
文件页数: 154/227页
文件大小: 0K
描述: IC FPGA SPARTAN-3E 1200K 400FBGA
标准包装: 60
系列: Spartan®-3E
LAB/CLB数: 2168
逻辑元件/单元数: 19512
RAM 位总计: 516096
输入/输出数: 304
门数: 1200000
电源电压: 1.14 V ~ 1.26 V
安装类型: 表面贴装
工作温度: 0°C ~ 85°C
封装/外壳: 400-BGA
供应商设备封装: 400-FBGA(21x21)
第1页第2页第3页第4页第5页第6页第7页第8页第9页第10页第11页第12页第13页第14页第15页第16页第17页第18页第19页第20页第21页第22页第23页第24页第25页第26页第27页第28页第29页第30页第31页第32页第33页第34页第35页第36页第37页第38页第39页第40页第41页第42页第43页第44页第45页第46页第47页第48页第49页第50页第51页第52页第53页第54页第55页第56页第57页第58页第59页第60页第61页第62页第63页第64页第65页第66页第67页第68页第69页第70页第71页第72页第73页第74页第75页第76页第77页第78页第79页第80页第81页第82页第83页第84页第85页第86页第87页第88页第89页第90页第91页第92页第93页第94页第95页第96页第97页第98页第99页第100页第101页第102页第103页第104页第105页第106页第107页第108页第109页第110页第111页第112页第113页第114页第115页第116页第117页第118页第119页第120页第121页第122页第123页第124页第125页第126页第127页第128页第129页第130页第131页第132页第133页第134页第135页第136页第137页第138页第139页第140页第141页第142页第143页第144页第145页第146页第147页第148页第149页第150页第151页第152页第153页当前第154页第155页第156页第157页第158页第159页第160页第161页第162页第163页第164页第165页第166页第167页第168页第169页第170页第171页第172页第173页第174页第175页第176页第177页第178页第179页第180页第181页第182页第183页第184页第185页第186页第187页第188页第189页第190页第191页第192页第193页第194页第195页第196页第197页第198页第199页第200页第201页第202页第203页第204页第205页第206页第207页第208页第209页第210页第211页第212页第213页第214页第215页第216页第217页第218页第219页第220页第221页第222页第223页第224页第225页第226页第227页
Spartan-3E FPGA Family: Functional Description
DS312 (v4.1) July 19, 2013
Product Specification
32
Initialization
The CLB storage elements are initialized at power-up,
during configuration, by the global GSR signal, and by the
individual SR or REV inputs to the CLB. The storage
elements can also be re-initialized using the GSR input on
the STARTUP_SPARTAN3E primitive. See Global Controls
Distributed RAM
For additional information, refer to the “Using Look-Up
Tables as Distributed RAM” chapter in UG331.
The LUTs in the SLICEM can be programmed as distributed
RAM. This type of memory affords moderate amounts of
data buffering anywhere along a data path. One SLICEM
LUT stores 16 bits (RAM16). The four LUT inputs F[4:1] or
G[4:1] become the address lines labeled A[4:1] in the
device model and A[3:0] in the design components,
providing a 16x1 configuration in one LUT. Multiple SLICEM
LUTs can be combined in various ways to store larger
amounts of data, including 16x4, 32x2, or 64x1
configurations in one CLB. The fifth and sixth address lines
required for the 32-deep and 64-deep configurations,
respectively, are implemented using the BX and BY inputs,
which connect to the write enable logic for writing and the
F5MUX and F6MUX for reading.
Writing to distributed RAM is always synchronous to the
SLICEM clock (WCLK for distributed RAM) and enabled by
the SLICEM SR input which functions as the active-High
Write Enable (WE). The read operation is asynchronous,
and, therefore, during a write, the output initially reflects the
old data at the address being written.
The distributed RAM outputs can be captured using the
flip-flops within the SLICEM element. The WE write-enable
control for the RAM and the CE clock-enable control for the
flip-flop are independent, but the WCLK and CLK clock
inputs are shared. Because the RAM read operation is
asynchronous, the output data always reflects the currently
addressed RAM location.
A dual-port option combines two LUTs so that memory
access is possible from two independent data lines. The
same data is written to both 16x1 memories but they have
independent read address lines and outputs. The dual-port
function is implemented by cascading the G-LUT address
lines, which are used for both read and write, to the F-LUT
write address lines (WF[4:1] in Figure 15), and by
cascading the G-LUT data input D1 through the DIF_MUX
in Figure 15 and to the D1 input on the F-LUT. One CLB
provides a 16x1 dual-port memory as shown in Figure 26.
Any write operation on the D input and any read operation
on the SPO output can occur simultaneously with and
independently from a read operation on the second
read-only port, DPO.
Table 17: Slice Storage Element Initialization
Signal
Description
SR
Set/Reset input. Forces the storage element into the
state specified by the attribute SRHIGH or SRLOW.
SRHIGH forces a logic 1 when SR is asserted.
SRLOW forces a logic 0. For each slice, set and reset
can be set to be synchronous or asynchronous.
REV
Reverse of Set/Reset input. A second input (BY)
forces the storage element into the opposite state.
The reset condition is predominant over the set
condition if both are active. Same
synchronous/asynchronous setting as for SR.
GSR
Global Set/Reset. GSR defaults to active High but can
be inverted by adding an inverter in front of the GSR
input of the STARTUP_SPARTAN3E element. The
initial state after configuration or GSR is defined by a
separate INIT0 and INIT1 attribute. By default, setting
the SRLOW attribute sets INIT0, and setting the
SRHIGH attribute sets INIT1.
相关PDF资料
PDF描述
0511171605 CONN RETAINER FOR 16POS HOUSING
XC3S1200E-4FGG400I IC FPGA SPARTAN-3E 1200K 400FBGA
GSC43DTEI CONN EDGECARD 86POS .100 EYELET
XC6SLX25T-N3FGG484I IC FPGA SPARTAN-6 484FBGA
XC3S1000-4FGG456I SPARTAN-3A FPGA 1M STD 456-FBGA
相关代理商/技术参数
参数描述
XC3S1200E-5FGG400I 制造商:XILINX 制造商全称:XILINX 功能描述:Spartan-3E FPGA Family
XC3S1200E-5FGG484C 制造商:XILINX 制造商全称:XILINX 功能描述:Spartan-3E FPGA Family
XC3S1200E-5FGG484I 制造商:XILINX 制造商全称:XILINX 功能描述:Spartan-3E FPGA Family
XC3S1200E-5FT256C 制造商:Xilinx 功能描述:FPGA SPARTAN-3E 1.2M GATES 19512 CELLS 657MHZ 90NM 1.2V 256F - Trays
XC3S1200E-5FT256I 制造商:XILINX 制造商全称:XILINX 功能描述:Spartan-3E FPGA Family