参数资料
型号: COP8SG-EPU
厂商: National Semiconductor
文件页数: 18/55页
文件大小: 0K
描述: BOARD PROTOTYPE/TARGET COP8
标准包装: 1
系列: COP8™
类型: MCU
适用于相关产品: Cop 8
所含物品:
相关产品: COP8SGR728M7-ND - MCU 8BIT CMOS ROM OTP 28-SOIC
COP8SGR744V8-ND - IC MCU 8BIT CMOS OTP 44PLCC
COP8SGR728N8/NOPB-ND - IC MCU 8BIT CMOS OTP 28DIP
COP8SGR728M8-ND - IC MCU 8BIT CMOS OTP 28SOIC
COP8SGE7VEJ8-ND - IC MCU 8BIT CMOS OTP 44LQFP
COP8SGE744V8/NOPB-ND - IC MCU 8BIT CMOS OTP 44PLCC
COP8SGE728N8-ND - IC MCU 8BIT CMOS OTP 28DIP
COP8SGE728M8/NOPB-ND - IC MCU 8BIT CMOS OTP 28SOIC
Data Memory Segment RAM
Extension (Continued)
0200 to 027F for data segment 2, etc., up to FF00 to FF7F
for data segment 255. The base address range from 0000 to
007F represents data segment 0.
Figure 5 illustrates how the S register data memory exten-
sion is used in extending the lower half of the base address
range (00 to 7F hex) into 256 data segments of 128 bytes
each, with a total addressing range of 32 kbytes from XX00
to XX7F. This organization allows a total of 256 data seg-
ments of 128 bytes each with an additional upper base seg-
ment of 128 bytes. Furthermore, all addressing modes are
available for all data segments. The S register must be
changed under program control to move from one data seg-
ment (128 bytes) to another. However, the upper base seg-
ment (containing the 16 memory registers, I/O registers,
control registers, etc.) is always available regardless of the
contents of the S register, since the upper base segment
(address range 0080 to 00FF) is independent of data seg-
ment extension.
The instructions that utilize the stack pointer (SP) always ref-
erence the stack as part of the base segment (Segment 0),
regardless of the contents of the S register. The S register is
not changed by these instructions. Consequently, the stack
(used with subroutine linkage and interrupts) is always lo-
cated in the base segment. The stack pointer will be intitial-
ized to point at data memory location 006F as a result of re-
set.
The 128 bytes of RAM contained in the base segment are
split between the lower and upper base segments. The first
112 bytes of RAM are resident from address 0000 to 006F in
the lower base segment, while the remaining 16 bytes of
RAM represent the 16 data memory registers located at ad-
dresses 00F0 to 00FF of the upper base segment. No RAM
is located at the upper sixteen addresses (0070 to 007F) of
the lower base segment.
Additional RAM beyond these initial 128 bytes, however, will
always be memory mapped in groups of 128 bytes (or less)
at the data segment address extensions (XX00 to XX7F) of
the lower base segment. The additional bytes of RAM are
memory mapped from segment 1 up through segment 3 (see
Figure 5).
17
DS012829-6
* Reads as all ones.
FIGURE 5. RAM Organization
Reset
The RESET input when pulled low initializes the microcon-
troller. Initialization will occur whenever the RESET input is
pulled low. Upon initialization, the data and configuration
registers for ports L, G and C are cleared, resulting in these
Ports being initialized to the TRI-STATE mode. Pin G1 of the
G Port is an exception (as noted below) since pin G1 is dedi-
cated as the WATCHDOG and/or Clock Monitor error output
pin. Port D is set high. The PC, PSW, ICNTRL, CNTRL,
T2CNTRL and T3CNTRL control registers are cleared. The
USART registers PSR, ENU (except that TBMT bit is set),
ENUR and ENUI are cleared. The Comparator Select Regis-
ter is cleared. The S register is initialized to zero. The
Multi-Input Wakeup registers WKEN and WKEDG are
cleared. Wakeup register WKPND is unknown. The stack
pointer, SP, is initialized to 6F hex.
The device comes out of reset with both the WATCHDOG
logic and the Clock Monitor detector armed, with the
WATCHDOG service window bits set and the Clock Monitor
bit set. The WATCHDOG and Clock Monitor circuits are in-
hibited during reset. The WATCHDOG service window bits
being initialized high default to the maximum WATCHDOG
service window of 64k t C clock cycles. The Clock Monitor bit
being initialized high will cause a Clock Monitor error follow-
ing reset if the clock has not reached the minimum specified
frequency at the termination of reset. A Clock Monitor error
will cause an active low error output on pin G1. This error
output will continue until 16 t C –32 t C clock cycles following
the clock frequency reaching the minimum specified value,
at which time the G1 output will enter the TRI-STATE mode.
The external RC n etwork shown in Figure 6 should be used
to ensure that the RESET pin is held low until the power sup-
ply to the chip stabilizes.
www.national.com
相关PDF资料
PDF描述
CORE1553-DEV-KIT KIT DEVELOPMENT FOR IP CORE1553
CP131-AG LNR PWR SUP 5V 8A, +/-12V 1.7A
CPC1590P MOSFET GATE DVR ISO 8-FLATPACK
CPC5002G ISOLAT DGTL 3.75KVRMS 2CH 8-DIP
CPCI-D-3U-300C PWR SUPLY DC/DC CPCI 300W 3UX8HP
相关代理商/技术参数
参数描述
COP8SGR728M7 功能描述:8位微控制器 -MCU RoHS:否 制造商:Silicon Labs 核心:8051 处理器系列:C8051F39x 数据总线宽度:8 bit 最大时钟频率:50 MHz 程序存储器大小:16 KB 数据 RAM 大小:1 KB 片上 ADC:Yes 工作电源电压:1.8 V to 3.6 V 工作温度范围:- 40 C to + 105 C 封装 / 箱体:QFN-20 安装风格:SMD/SMT
COP8SGR728M7/NOPB 功能描述:8位微控制器 -MCU RoHS:否 制造商:Silicon Labs 核心:8051 处理器系列:C8051F39x 数据总线宽度:8 bit 最大时钟频率:50 MHz 程序存储器大小:16 KB 数据 RAM 大小:1 KB 片上 ADC:Yes 工作电源电压:1.8 V to 3.6 V 工作温度范围:- 40 C to + 105 C 封装 / 箱体:QFN-20 安装风格:SMD/SMT
COP8SGR728M8 功能描述:8位微控制器 -MCU RoHS:否 制造商:Silicon Labs 核心:8051 处理器系列:C8051F39x 数据总线宽度:8 bit 最大时钟频率:50 MHz 程序存储器大小:16 KB 数据 RAM 大小:1 KB 片上 ADC:Yes 工作电源电压:1.8 V to 3.6 V 工作温度范围:- 40 C to + 105 C 封装 / 箱体:QFN-20 安装风格:SMD/SMT
COP8SGR728M8/NOPB 功能描述:8位微控制器 -MCU RoHS:否 制造商:Silicon Labs 核心:8051 处理器系列:C8051F39x 数据总线宽度:8 bit 最大时钟频率:50 MHz 程序存储器大小:16 KB 数据 RAM 大小:1 KB 片上 ADC:Yes 工作电源电压:1.8 V to 3.6 V 工作温度范围:- 40 C to + 105 C 封装 / 箱体:QFN-20 安装风格:SMD/SMT
COP8SGR728N8 功能描述:8位微控制器 -MCU RoHS:否 制造商:Silicon Labs 核心:8051 处理器系列:C8051F39x 数据总线宽度:8 bit 最大时钟频率:50 MHz 程序存储器大小:16 KB 数据 RAM 大小:1 KB 片上 ADC:Yes 工作电源电压:1.8 V to 3.6 V 工作温度范围:- 40 C to + 105 C 封装 / 箱体:QFN-20 安装风格:SMD/SMT