参数资料
型号: DC1472A
厂商: Linear Technology
文件页数: 14/24页
文件大小: 0K
描述: BOARD DEMO LTM4618
软件下载: LTM4618 Spice Model
设计资源: DC1472A Design Files
DC1472A Schematic
标准包装: 1
系列: µModule®
主要目的: DC/DC,步降
输出及类型: 1,非隔离
输出电压: 1.2V,1.5V,1.8V,2.5V,3.3V,5V
电流 - 输出: 6A
输入电压: 4.5 ~ 26.5 V
稳压器拓扑结构: 降压
频率 - 开关: 500kHz
板类型: 完全填充
已供物品:
已用 IC / 零件: LTM4618
相关产品: LTM4618IV#PBF-ND - IC DC-DC UMODULE BUCK 6A 84-LGA
LTM4618EV#PBF-ND - IC DC-DC UMODULE BUCK 6A 84-LGA
其它名称: DC1472
DC1472-ND
LTM4618
APPLICATIONS INFORMATION
board, and is really the sum of the θ JCbottom and the
thermal resistance of the bottom of the part through
the solder joints and through a portion of the board.
The board temperature is measured at speci?ed dis-
tance from the package, using a two sided, two layer
board. This board is described in JESD 51-9.
A graphical representation of the forementioned thermal
resistances is given in Figure 6; blue resistances are
contained within the μModule regulator, whereas green
resistances are external to the μModule regulator.
As a practical matter, it should be clear to the reader that
no individual or sub-group of the four thermal resistance
parameters de?ned by JESD 51-12 or provided in the
Pin Con?guration section replicates or conveys normal
operating conditions of a μModule regulator. For example,
in actual board-mounted applications, never does 100%
of the device’s total power loss (heat) thermally conduct
exclusively through the top or exclusively through bot-
tom of the μModule regulator—as the standard de?nes
for θ JCtop and θ JCbottom , respectively. In practice, power
loss is thermally dissipated in both directions away from
the package—granted, in the absence of a heat sink and
air?ow, a majority of the heat ?ow is into the board.
Within a SIP (System-In-Package) module, be aware there
are multiple power devices and components dissipating
power, with a consequence that the thermal resistances
relative to different junctions of components or die are not
exactly linear with respect to total package power loss. To
reconcile this complication without sacri?cing modeling
simplicity—but also, not ignoring practical realities—an
approach has been taken using FEA software modeling
along with laboratory testing in a controlled-environment
chamber to reasonably de?ne and correlate the thermal
resistance values supplied in this data sheet: (1) Initially,
FEA software is used to accurately build the mechanical
geometry of the μModule regulator and the speci?ed PCB
with all of the correct material coef?cients along with
accurate power loss source de?nitions; (2) this model
simulates a software-de?ned JEDEC environment consis-
tent with JSED51-9 to predict power loss heat ?ow and
temperature readings at different interfaces that enable
the calculation of the JEDEC-de?ned thermal resistance
values; (3) the model and FEA software is used to evalu-
ate the μModule regulator with heat sinks and air?ow; (4)
having solved for and analyzed these thermal resistance
values and simulated various operating conditions in the
software model, a thorough laboratory evaluation replicates
the simulated conditions with thermocouples within a
controlled-environment chamber while operating the device
at the same power loss as that which was simulated. An
outcome of this process and due-diligence yields a set
of derating curves provided in other sections of this data
sheet. After these laboratory tests have been performed
and correlated to the μModule package model, then the
θ JB and θ BA are summed together to correlate quite well
with the μModule package model with no air ?ow or heat
sinking in a properly de?ne chamber. This θ JB + θ BA value
is shown in the Pin Con?guration section and should ac-
curately equal the θ JA value because approximately 100%
of power loss ?ows from the junction through the board
into ambient with no air?ow or top mounted heat sink.
JUNCTION-TO-AMBIENT RESISTANCE (JESD 51-9 DEFINED BOARD)
JUNCTION-TO-CASE (TOP)
RESISTANCE
CASE (TOP)-TO-AMBIENT
RESISTANCE
JUNCTION
JUNCTION-TO-BOARD RESISTANCE
At
JUNCTION-TO-CASE
(BOTTOM) RESISTANCE
CASE (BOTTOM)-TO-BOARD
RESISTANCE
BOARD-TO-AMBIENT
RESISTANCE
4618 F06
μMODULE DEVICE
Figure 6. Graphical Representation of JESD51-12 Thermal Coef?cients
4618fa
14
相关PDF资料
PDF描述
EBM15DTKS CONN EDGECARD 30POS DIP .156 SLD
IR2136S IC DRIVER BRIDGE 3-PHASE 28-SOIC
EL7156CS-T7 IC PIN DRIVER 40MHZ 3ST 8-SOIC
395-062-521-204 CARD EDGE 62POS DL .100X.200 BLK
F750G108MDC CAP TANT 1000UF 4V 20% 2917
相关代理商/技术参数
参数描述
DC1477A 功能描述:BOARD EVAL LTM4609 RoHS:否 类别:编程器,开发系统 >> 评估板 - DC/DC 与 AC/DC(离线)SMPS 系列:µModule® 标准包装:1 系列:- 主要目的:DC/DC,步降 输出及类型:1,非隔离 功率 - 输出:- 输出电压:3.3V 电流 - 输出:3A 输入电压:4.5 V ~ 28 V 稳压器拓扑结构:降压 频率 - 开关:250kHz 板类型:完全填充 已供物品:板 已用 IC / 零件:L7981 其它名称:497-12113STEVAL-ISA094V1-ND
DC1477B 功能描述:BOARD EVAL LTM4609 RoHS:否 类别:编程器,开发系统 >> 评估板 - DC/DC 与 AC/DC(离线)SMPS 系列:µModule® 标准包装:1 系列:- 主要目的:DC/DC,步降 输出及类型:1,非隔离 功率 - 输出:- 输出电压:3.3V 电流 - 输出:3A 输入电压:4.5 V ~ 28 V 稳压器拓扑结构:降压 频率 - 开关:250kHz 板类型:完全填充 已供物品:板 已用 IC / 零件:L7981 其它名称:497-12113STEVAL-ISA094V1-ND
DC1483A 制造商:Linear Technology 功能描述:EVAL BOARD, LTC3535 100mA SYNC STEP-UP R 制造商:Linear Technology 功能描述:EVAL BOARD, LTC3535 100mA SYNC STEP-UP REG; Silicon Manufacturer:Linear Technology; Silicon Core Number:LTC3535; Kit Application Type:Power Management; Kit Contents:Evaluation Board for LTC3535; Length:42mm
DC1485A 功能描述:BOARD DAC LTC2757 RoHS:是 类别:编程器,开发系统 >> 评估板 - 数模转换器 (DAC) 系列:QuikEval™, SoftSpan™ 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:1 系列:- DAC 的数量:4 位数:12 采样率(每秒):- 数据接口:串行,SPI? 设置时间:3µs DAC 型:电流/电压 工作温度:-40°C ~ 85°C 已供物品:板 已用 IC / 零件:MAX5581
DC1488A-A 功能描述:BOARD DAC LTC2634-12 RoHS:是 类别:编程器,开发系统 >> 评估板 - 数模转换器 (DAC) 系列:QuikEval™ 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:1 系列:- DAC 的数量:4 位数:12 采样率(每秒):- 数据接口:串行,SPI? 设置时间:3µs DAC 型:电流/电压 工作温度:-40°C ~ 85°C 已供物品:板 已用 IC / 零件:MAX5581