参数资料
型号: EVAL-AD7730LEBZ
厂商: Analog Devices Inc
文件页数: 42/53页
文件大小: 0K
描述: BOARD EVALUATION FOR AD7730
标准包装: 1
ADC 的数量: 1
位数: 24
采样率(每秒): 600
数据接口: 串行
输入范围: ±80 mV
在以下条件下的电源(标准): 125mW @ 600SPS
工作温度: -40°C ~ 85°C
已用 IC / 零件: AD7730
已供物品: 板,CD
相关产品: AD7730LBRUZ-ND - IC ADC TRANSDUCER BRIDGE 24TSSOP
AD7730LBRZ-ND - IC ADC TRANSDUCER BRIDGE 24SOIC
AD7730LBRUZ-REEL7-ND - IC ADC TRANSDUCER BRIDGE 24TSSOP
AD7730LBRZ-REEL-ND - IC ADC TRANSDUCER BRIDGE 24SOIC
AD7730LBRUZ-REEL-ND - IC ADC TRANSDUCER BRIDGE 24TSSOP
AD7730BRUZ-REEL7-ND - IC ADC BRIDGE TRANSDUCER 24TSSOP
AD7730BRUZ-REEL-ND - IC ADC BRIDGE TRANSDUCER 24TSSOP
AD7730BRUZ-ND - IC ADC TRANSDUCER BRIDGE 24TSSOP
AD7730BNZ-ND - IC ADC TRANSDUCER BRIDGE 24-DIP
AD7730BRZ-REEL7TR-ND - IC ADC BRDGE TRANSDCR 24SOIC TR
更多...
–47–
AD7730/AD7730L
NOTES
11Temperature range: –40°C to +85°C.
12Sample tested during initial release.
13The offset (or zero) numbers with CHP = 1 are typically 3 μV precalibration. Internal zero-scale calibration reduces this by about 1 μV. Offset numbers with CHP = 0 can be up to
1 mV precalibration. Internal zero-scale calibration reduces this to 2
μV typical. System zero-scale calibration reduces offset numbers with CHP = 1 and CHP = 0 to the order of the
noise. Gain errors can be up to 3000 ppm precalibration with CHP = 0 and CHP = 1. Performing internal full-scale calibrations on the 80 mV range reduces the gain error to less than
100 ppm for the 80 mV and 40 mV ranges, to about 250 ppm for the 20 mV range and to about 500 ppm on the 10 mV range. System full-scale calibration reduces this to the order of
the noise. Positive and negative full-scale errors can be calculated from the offset and gain errors.
14These numbers are generated during life testing of the part.
15Positive Full-Scale Error includes Offset Errors (Unipolar Offset Error or Bipolar Zero Error) and applies to both unipolar and bipolar input ranges.
16Recalibration at any temperature will remove these errors.
17Full-Scale Drift includes Offset Drift (Unipolar Offset Drift or Bipolar Zero Drift) and applies to both unipolar and bipolar input ranges.
18Gain Error is a measure of the difference between the measured and the ideal span between any two points in the transfer function. The two points used to calculate the gain
error are positive full scale and negative full scale. See Terminology.
19Gain Error Drift is a span drift and is effectively the drift of the part if zero-scale calibrations only were performed.
10No Missing Codes performance with CHP = 0 and SKIP = 1 is reduced below 24 bits for SF words lower than 180 decimal.
11The analog input voltage range on the AIN1(+) and AIN2(+) inputs is given here with respect to the voltage on the AIN1(–) and AIN2(–) inputs respectively.
12The common-mode voltage range on the input pairs applies provided the absolute input voltage specification is obeyed.
13The common-mode voltage range on the reference input pair (REF IN(+) and REF IN(–)) applies provided the absolute input voltage specification is obeyed.
14These logic output levels apply to the MCLK OUT output only when it is loaded with a single CMOS load.
15VDD refers to DVDD for all logic outputs expect D0, D1, ACX and ACX where it refers to AVDD. In other words, the output logic high for these four outputs is determined by AVDD.
16This number represents the total drift of the channel with a zero input and the DAC output near full scale.
17After calibration, if the input voltage exceeds positive full scale, the converter will output all 1s. If the input is less than negative full scale, the device outputs all 0s.
18These calibration and span limits apply provided the absolute input voltage specification is obeyed. The offset calibration limit applies to both the unipolar zero point and the
bipolar zero point.
Specifications subject to change without notice.
TIMING CHARACTERISTICS1, 2
Limit at TMIN to TMAX
Parameter
(B Version)
Units
Conditions/Comments
Master Clock Range
1
MHz min
For Specified Performance
5
MHz max
t1
50
ns min
SYNC Pulsewidth
t2
50
ns min
RESET Pulsewidth
Read Operation
t3
0
ns min
RDY to CS Setup Time
t4
0
ns min
CS Falling Edge to SCLK Active Edge Setup Time3
t54
0
ns min
SCLK Active Edge to Data Valid Delay3
60
ns max
DVDD = +4.75 V to +5.25 V
80
ns max
DVDD = +2.75 V to +3.3 V
t5A4, 5
0
ns min
CS Falling Edge to Data Valid Delay
60
ns max
DVDD = +4.75 V to +5.25 V
80
ns max
DVDD = +2.7 V to +3.3 V
t6
100
ns min
SCLK High Pulsewidth
t7
100
ns min
SCLK Low Pulsewidth
t8
0
ns min
CS Rising Edge to SCLK Inactive Edge Hold Time3
t96
10
ns min
Bus Relinquish Time after SCLK Inactive Edge3
80
ns max
t10
100
ns max
SCLK Active Edge to
RDY High3, 7
Write Operation
t11
0
ns min
CS Falling Edge to SCLK Active Edge Setup Time3
t12
30
ns min
Data Valid to SCLK Edge Setup Time
t13
25
ns min
Data Valid to SCLK Edge Hold Time
t14
100
ns min
SCLK High Pulsewidth
t15
100
ns min
SCLK Low Pulsewidth
t16
0
ns min
CS Rising Edge to SCLK Edge Hold Time
NOTES
1Sample tested during initial release to ensure compliance. All input signals are specified with tr = tf = 5 ns (10% to 90% of DV DD) and timed from a voltage level of 1.6 V.
2See Figures 18 and 19.
3SCLK active edge is falling edge of SCLK with POL = 1; SCLK active edge is rising edge of SCLK with POL = 0.
4These numbers are measured with the load circuit of Figure 1 and defined as the time required for the output to cross the VOL or VOH limits.
5This specification only comes into play if CS goes low while SCLK is low (POL = 1) or if CS goes low while SCLK is high (POL = 0). It is primarily required for
interfacing to DSP machines.
6These numbers are derived from the measured time taken by the data output to change 0.5 V when loaded with the circuit of Figure 1. The measured number is then
extrapolated back to remove effects of charging or discharging the 50 pF capacitor. This means that the times quoted in the timing characteristics are the true bus
relinquish times of the part and as such are independent of external bus loading capacitances.
7RDY returns high after the first read from the device after an output update. The same data can be read again, if required, while RDY is high, although care should
be taken that subsequent reads do not occur close to the next output update.
(AVDD = +4.75 V to +5.25 V; DVDD = +3 V to +5.25 V; AGND = DGND = 0 V; fCLK IN = 2.4576 MHz;
Input Logic 0 = 0 V, Logic 1 = DVDD unless otherwise noted).
REV. B
相关PDF资料
PDF描述
EBC20DRTN-S93 CONN EDGECARD 40POS DIP .100 SLD
RGM06DTKN-S288 CONN EDGECARD 12POS .156 EXTEND
EBC20DRTH-S93 CONN EDGECARD 40POS DIP .100 SLD
PCMC133E-1R0MF COIL 1.0 UH POWER CHOKE 20% SMD
RYM06DTKH-S288 CONN EDGECARD 12POS .156 EXTEND
相关代理商/技术参数
参数描述
EVAL-AD7731EB 制造商:Analog Devices 功能描述:EVALUATION BOARD I.C. - Bulk
EVAL-AD7731EBZ 功能描述:BOARD EVALUATION FOR AD7731 RoHS:是 类别:编程器,开发系统 >> 评估板 - 模数转换器 (ADC) 系列:- 产品培训模块:Obsolescence Mitigation Program 标准包装:1 系列:- ADC 的数量:1 位数:12 采样率(每秒):94.4k 数据接口:USB 输入范围:±VREF/2 在以下条件下的电源(标准):- 工作温度:-40°C ~ 85°C 已用 IC / 零件:MAX11645 已供物品:板,软件
EVAL-AD7732EB 制造商:Analog Devices 功能描述:2-CHANNEL, ??10 V INPUT RANGE, HIGH THROUGHPUT, 24-BIT ADC
EVAL-AD7732EBZ 功能描述:BOARD EVAL FOR AD7732 RoHS:是 类别:编程器,开发系统 >> 评估板 - 模数转换器 (ADC) 系列:- 产品培训模块:Obsolescence Mitigation Program 标准包装:1 系列:- ADC 的数量:1 位数:12 采样率(每秒):94.4k 数据接口:USB 输入范围:±VREF/2 在以下条件下的电源(标准):- 工作温度:-40°C ~ 85°C 已用 IC / 零件:MAX11645 已供物品:板,软件
EVAL-AD7734EBZ 功能描述:BOARD EVALUATION FOR AD7734 RoHS:是 类别:编程器,开发系统 >> 评估板 - 模数转换器 (ADC) 系列:- 产品培训模块:Obsolescence Mitigation Program 标准包装:1 系列:- ADC 的数量:1 位数:12 采样率(每秒):94.4k 数据接口:USB 输入范围:±VREF/2 在以下条件下的电源(标准):- 工作温度:-40°C ~ 85°C 已用 IC / 零件:MAX11645 已供物品:板,软件