参数资料
型号: ISL6271ACR
厂商: Intersil
文件页数: 13/16页
文件大小: 0K
描述: IC REG PMIC 1BUCK 2LDO 20-QFN
标准包装: 75
应用: 处理器
电流 - 电源: 380µA
电源电压: 2.76 V ~ 5.5 V
工作温度: -25°C ~ 85°C
安装类型: 表面贴装
封装/外壳: 20-VFQFN 裸露焊盘
供应商设备封装: 20-QFN 裸露焊盘(4x4)
包装: 管件
ISL6271A
Light Load Operation - DCM
A light load is defined when the output inductor ripple current
reaches zero before the next switching cycle. Under this
condition, the ISL6271A synchronous rectifier will turn off
emulating a diode to prevent negative inductor current. As
explained below, the switching frequency and losses
associated with turning on the synchronous rectifier will be
reduced to enhance the low current efficiency. The top
waveform in Figure 22 shows the phase voltage in DCM.
The middle waveforms include the error amplifier voltage,
ripple capacitor voltage and the boundaries of the hysteresis
comparator which track the EA output. The waveform at the
bottom is representative of the inductor current. Notice that
in a switching cycle the inductor current rises as the upper
P-MOSFET turns on, falls when the lower N-MOSFET turns
on, and stays at zero after the current reaches zero as a
result of diode emulation.
CLAMPED VRP> LOWER HYS
VPH
A load transition from full load to no load will result in a finite
period of time during which the error amplifier settles to a
new steady state condition. As illustrated in Figure 23, the
SSR architecture inherent to the ISL6271A responds within
6μs of the mode change, slewing the error amplifier output
below the clamped ripple capacitor voltage and preventing
the upper FET from turning on. Prior to reaching the new
stability point, the phase node applies four phase pulses
before the controller forces the output voltage to the
prescribed regulation point. Once the output falls below the
reference voltage the controller then pumps up the output
voltage and enters its steady state DCM. Mode changes that
take the converter from CCM into DCM will have much
higher output voltage spike than a load step that remains in
CCM. Compared with competitive solutions the ISL6271A
responds very well during this severe mode change and it is
more than sufficient to meet Vcore tolerance specifications
as required by Intel.
CCM
VCMP
VEA
VRP
LOOP CLOSES 6μs AFTER MODE CHANGE
DCM
CLAMPED VRP = > LOWER HYS
ILO
PHASE PULSES BEFORE LOOP IS CLOSED
FIGURE 22. SRR IN DCM
To understand the ISL6271A light load operation, look
carefully at the waveforms in the middle of Figure 22. Notice
that the voltage across the ripple capacitor, VRP, has a
minimum clamp voltage (typically 0.4V), and that the Error
Amplifier can go below this voltage (typically clamped to
0.2V). In DCM, the voltage across ripple capacitor will be
discharged each cycle to the clamp voltage. While the lower
hysteresis is below this voltage, the ripple capacitor will
remain clamped keeping the upper P-MOSFET off. As the
EA voltage increases so too will the lower threshold of the
hysteresis window until it reaches the ripple capacitor clamp
voltage (VCLMP). At this point, the upper FET will be
enabled and will turn on. The lighter the load, the lower the
error amplifier output is, and the longer the ripple capacitor
voltage stays at the VCLMP voltage. This results in a phase
node switching frequency that is proportional to load current
(that is, lower switching losses and higher efficiency at
lighter loads). In DCM the switching frequency will be lower
than in a heavy load, CCM.
13
FIGURE 23. CCM TO DCM MODE
Transition Between Light load and Heavy Load
Unlike most control topologies that require two sets of
circuits to control the light and heavy load operation, the
SRR control naturally switches between heavy and light load
with the same control circuit. As the load gets lighter, the
feedback forces the error amplifier output to a lower voltage
and when the lower threshold of the hysteresis window is
lower than VCLMP, light load operation begins. The scope
shot in Figure 24 illustrates a mode transition from a DCM
(10mA load current) to CCM (170mA) with trace 4 (GRN)
being the command pulse that initiates the mode change.
Prior to the load step, and while the converter is in DCM, the
ripple voltage is approximately 10mV and the ripple
frequency is 125kHz. In CCM, the converter operates at a
frequency of approximately 10X that of DCM and the ripple
is reduced by more than a factor of two.
FN9171.1
相关PDF资料
PDF描述
GEM18DRTF CONN EDGECARD 36POS DIP .156 SLD
V150C28E150B2 CONVERTER MOD DC/DC 28V 150W
1-862545-7 LEAD ASSY 16AWG SNG END 127MM
Q5-3X-1 1/2-01-SS25M HEATSK DL WL Q53X 1-1/2"X25M BLK
VI-B3P-EX CONVERTER MOD DC/DC 13.8V 75W
相关代理商/技术参数
参数描述
ISL6271ACR-T 功能描述:IC PMIC XSCALE PROCESSOR 20-QFN RoHS:否 类别:集成电路 (IC) >> PMIC - 电源管理 - 专用 系列:- 应用说明:Ultrasound Imaging Systems Application Note 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:37 系列:- 应用:医疗用超声波成像,声纳 电流 - 电源:- 电源电压:2.37 V ~ 6 V 工作温度:0°C ~ 70°C 安装类型:表面贴装 封装/外壳:56-WFQFN 裸露焊盘 供应商设备封装:56-TQFN-EP(8x8) 包装:管件
ISL6271ACRZ 功能描述:直流/直流开关调节器 LD PLL & SRAMG FOR I NTEL PROCESSORS IBM RoHS:否 制造商:International Rectifier 最大输入电压:21 V 开关频率:1.5 MHz 输出电压:0.5 V to 0.86 V 输出电流:4 A 输出端数量: 最大工作温度: 安装风格:SMD/SMT 封装 / 箱体:PQFN 4 x 5
ISL6271ACRZ-T 功能描述:直流/直流开关调节器 LD PLL & SRAMG FOR I NTEL PROCESSORS IBM RoHS:否 制造商:International Rectifier 最大输入电压:21 V 开关频率:1.5 MHz 输出电压:0.5 V to 0.86 V 输出电流:4 A 输出端数量: 最大工作温度: 安装风格:SMD/SMT 封装 / 箱体:PQFN 4 x 5
ISL6271AEVAL1 功能描述:EVALUATION BOARD FOR ISL6271A RoHS:否 类别:编程器,开发系统 >> 评估板 - DC/DC 与 AC/DC(离线)SMPS 系列:- 产品培训模块:Obsolescence Mitigation Program 标准包装:1 系列:True Shutdown™ 主要目的:DC/DC,步升 输出及类型:1,非隔离 功率 - 输出:- 输出电压:- 电流 - 输出:1A 输入电压:2.5 V ~ 5.5 V 稳压器拓扑结构:升压 频率 - 开关:3MHz 板类型:完全填充 已供物品:板 已用 IC / 零件:MAX8969
ISL6271CR 制造商:Rochester Electronics LLC 功能描述:PLL & SRAM REGULATOR FOR INTEL PROCESSORS - Bulk 制造商:Intersil Corporation 功能描述: