参数资料
型号: ISL6312AIRZ
厂商: Intersil
文件页数: 10/35页
文件大小: 0K
描述: IC CTRLR PWM 4PHASE BUCK 48-QFN
标准包装: 43
应用: 控制器,Intel VR10、VR11、AMD CPU
输入电压: 5 V ~ 12 V
输出数: 1
输出电压: 0.38 V ~ 1.6 V
工作温度: -40°C ~ 85°C
安装类型: 表面贴装
封装/外壳: 48-VFQFN 裸露焊盘
供应商设备封装: 48-QFN(7x7)
包装: 管件
ISL6312A
( V IN – V OUT ) ? V OUT (EQ. 1)
L ? f S ? V
PWM4
Pulse-width modulation output. Connect this pin to the PWM
input pin of an Intersil driver IC if 4-phase operation is
desired.
EN_PH4
This pin has two functions. First, a resistor divider connected
to this pin will provide a POR power up synch between the
on-chip and external driver. The resistor divider should be
designed so that when the POR-trip point of the external
driver is reached the voltage on this pin should be 1.21V.
The second function of this pin is disabling PWM4 for
3-phase operation. This can be accomplished by connecting
this pin to a +5V supply.
SS
A resistor, placed from SS to ground, will set the soft-start
ramp slope for the Intel DAC modes of operation. Refer to
Equations 18 and 19 for proper resistor calculation.
For AMD modes of operation, the soft-start ramp frequency
is preset, so this pin can be left unconnected.
OVPSEL
This pin selects the OVP trip point during normal operation.
Leaving it unconnected or tieing it to ground selects the
default setting of VDAC+175mV for Intel Modes of operation
and VDAC+250mV for AMD modes of operation. Connecting
this pin to VCC will select an OVP trip setting of VID+350mV
for all modes of operation.
DRSEL
This pin selects the adaptive dead time scheme the internal
drivers will use. If driving MOSFETs, tie this pin to ground to
select the PHASE detect scheme or to a +5V supply through
a 50k Ω resistor to select the LGATE detect scheme.
PGOOD
During normal operation PGOOD indicates whether the
output voltage is within specified overvoltage and
undervoltage limits. If the output voltage exceeds these limits
or a reset event occurs (such as an overcurrent event),
PGOOD is pulled low. PGOOD is always low prior to the end
of soft-start.
Operation
Multiphase Power Conversion
Microprocessor load current profiles have changed to the
point that using single-phase regulators is no longer a viable
solution. Designing a regulator that is cost-effective,
thermally sound, and efficient has become a challenge that
only multiphase converters can accomplish. The ISL6312A
controller helps simplify implementation by integrating vital
functions and requiring minimal external components. The
10
“Block Diagram” on page 3 provides a top level view of
multiphase power conversion using the ISL6312A controller.
IL1 + IL2 + IL3, 7A/DIV
IL3, 7A/DIV
PWM3, 5V/DIV
IL2, 7A/DIV
PWM2, 5V/DIV
IL1, 7A/DIV
PWM1, 5V/DIV
1 μ s/DIV
FIGURE 1. PWM AND INDUCTOR-CURRENT WAVEFORMS
FOR 3-PHASE CONVERTER
Interleaving
The switching of each channel in a multiphase converter is
timed to be symmetrically out of phase with each of the other
channels. In a 3-phase converter, each channel switches 1/3
cycle after the previous channel and 1/3 cycle before the
following channel. As a result, the three-phase converter has a
combined ripple frequency three times greater than the ripple
frequency of any one phase. In addition, the peak-to-peak
amplitude of the combined inductor currents is reduced in
proportion to the number of phases (Equations 1 and 2).
Increased ripple frequency and lower ripple amplitude mean
that the designer can use less per-channel inductance and
lower total output capacitance for any performance
specification.
Figure 1 illustrates the multiplicative effect on output ripple
frequency. The three channel currents (IL1, IL2, and IL3)
combine to form the AC ripple current and the DC load
current. The ripple component has three times the ripple
frequency of each individual channel current. Each PWM
pulse is terminated 1/3 of a cycle after the PWM pulse of the
previous phase. The peak-to-peak current for each phase is
about 7A, and the DC components of the inductor currents
combine to feed the load.
To understand the reduction of ripple current amplitude in the
multiphase circuit, examine the equation representing an
individual channel peak-to-peak inductor current.
I ( P – P ) = ----------------------------------------------------------
IN
In Equation 1, V IN and V OUT are the input and output
voltages respectively, L is the single-channel inductor value,
and f S is the switching frequency.
The output capacitors conduct the ripple component of the
inductor current. In the case of multiphase converters, the
capacitor current is the sum of the ripple currents from each
FN9290.5
February 1, 2011
相关PDF资料
PDF描述
ISL6312CRZ-TR5312 IC CTRLR PWM 4PHASE BUCK 48-QFN
ISL6313BIRZ IC CTRLR PWM 2PHASE BUCK 36-QFN
ISL6313IRZ IC CTRLR PWM 2PHASE BUCK 36-QFN
ISL6314IRZ IC CTRLR PWM 1PHASE BUCK 32-QFN
ISL6315IRZ IC REG CTRLR BUCK PWM VM 24-QFN
相关代理商/技术参数
参数描述
ISL6312AIRZ-T 功能描述:IC CTRLR PWM 4PHASE BUCK 48-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - 专用型 系列:- 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:2,000 系列:- 应用:电源,ICERA E400,E450 输入电压:4.1 V ~ 5.5 V 输出数:10 输出电压:可编程 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:42-WFBGA,WLCSP 供应商设备封装:42-WLP 包装:带卷 (TR)
ISL6312CRZ 功能描述:IC CTRLR PWM 4PHASE BUCK 48-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - 专用型 系列:- 标准包装:2,000 系列:- 应用:控制器,DSP 输入电压:4.5 V ~ 25 V 输出数:2 输出电压:最低可调至 1.2V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:30-TFSOP(0.173",4.40mm 宽) 供应商设备封装:30-TSSOP 包装:带卷 (TR)
ISL6312CRZ-T 功能描述:IC CTRLR PWM 4PHASE BUCK 48-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - 专用型 系列:- 标准包装:43 系列:- 应用:控制器,Intel VR11 输入电压:5 V ~ 12 V 输出数:1 输出电压:0.5 V ~ 1.6 V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:48-VFQFN 裸露焊盘 供应商设备封装:48-QFN(7x7) 包装:管件
ISL6312CRZ-TK 功能描述:IC CTRLR PWM 4PHASE BUCK 48-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - 专用型 系列:- 标准包装:43 系列:- 应用:控制器,Intel VR11 输入电压:5 V ~ 12 V 输出数:1 输出电压:0.5 V ~ 1.6 V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:48-VFQFN 裸露焊盘 供应商设备封装:48-QFN(7x7) 包装:管件
ISL6312CRZ-TR5312 功能描述:IC CTRLR PWM 4PHASE BUCK 48-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - 专用型 系列:- 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:2,000 系列:- 应用:电源,ICERA E400,E450 输入电压:4.1 V ~ 5.5 V 输出数:10 输出电压:可编程 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:42-WFBGA,WLCSP 供应商设备封装:42-WLP 包装:带卷 (TR)