参数资料
型号: ISL6312AIRZ
厂商: Intersil
文件页数: 27/35页
文件大小: 0K
描述: IC CTRLR PWM 4PHASE BUCK 48-QFN
标准包装: 43
应用: 控制器,Intel VR10、VR11、AMD CPU
输入电压: 5 V ~ 12 V
输出数: 1
输出电压: 0.38 V ~ 1.6 V
工作温度: -40°C ~ 85°C
安装类型: 表面贴装
封装/外壳: 48-VFQFN 裸露焊盘
供应商设备封装: 48-QFN(7x7)
包装: 管件
ISL6312A
The total power dissipated by the upper MOSFET at full load
can now be approximated as the summation of the results
from Equations 26, 27, 28 and 29. Since the power
equations depend on MOSFET parameters, choosing the
PVCC
BOOT
C GD
D
correct MOSFETs can be an iterative process involving
repetitive solutions to the loss equations for different
MOSFETs and different switching frequencies.
Package Power Dissipation
When choosing MOSFETs it is important to consider the
amount of power being dissipated in the integrated drivers
R HI1
R LO1
PHASE
UGATE
G
R G1
R GI1
C GS
S
C DS
Q1
located in the controller. Since there are a total of three
drivers in the controller package, the total power dissipated
by all three drivers must be less than the maximum
allowable power dissipation for the QFN package.
Calculating the power dissipation in the drivers for a desired
FIGURE 16. TYPICAL UPPER-GATE DRIVE TURN-ON PATH
PVCC
D
C GD
application is critical to ensure safe operation. Exceeding the
maximum allowable power dissipation level will push the IC
beyond the maximum recommended operating junction
temperature of 125°C. The maximum allowable IC power
dissipation for the 7x7 QFN package is approximately 3.5W
at room temperature. See “Layout Considerations” on
R HI2
R LO2
LGATE
G
R G2
R GI2
C GS
S
C DS
Q2
page 32 for thermal transfer improvement suggestions.
P Qg_TOT = P Qg_Q1 + P Qg_Q2 + I Q ? VCC
P Qg_Q1 = --- ? Q G1 ? PVCC ? F SW ? N Q1 ? N PHASE
When designing the ISL6312A into an application, it is
recommended that the following calculation is used to ensure
safe operation at the desired frequency for the selected
MOSFETs. The total gate drive power losses, P Qg_TOT , due to
the gate charge of MOSFETs and the integrated driver’s
internal circuitry and their corresponding average driver current
can be estimated with Equations 30 and 31, respectively.
(EQ. 30)
3
2
P Qg_Q2 = Q G2 ? PVCC ? F SW ? N Q2 ? N PHASE
FIGURE 17. TYPICAL LOWER-GATE DRIVE TURN-ON PATH
The total gate drive power losses are dissipated among the
resistive components along the transition path and in the
bootstrap diode. The portion of the total power dissipated in
the controller itself is the power dissipated in the upper drive
path resistance, P DR_UP , the lower drive path resistance,
P DR_UP , and in the boot strap diode, P BOOT . The rest of the
power will be dissipated by the external gate resistors (R G1
and R G2 ) and the internal gate resistors (R GI1 and R GI2 ) of
the MOSFETs. Figures 16 and 17 show the typical upper and
lower gate drives turn-on transition path. The total power
dissipation in the controller itself, P DR , can be roughly
estimated as:
(EQ. 31)
P DR = P DR_UP + P DR_LOW + P BOOT + ( I Q ? VCC )
(EQ. 32)
I DR = ? --- ? Q G1 ? N
3
? 2
Q1
?
+ Q G2 ? N Q2 ? ? N PHASE ? F SW + I Q
3
P Qg_Q1
P BOOT = ---------------------
P DR_UP = ? -------------------------------------- + ---------------------------------------- ? ? ---------------------
R HI1 + R EXT1 R LO1 + R EXT1 ?
?
P DR_LOW = ? -------------------------------------- + ---------------------------------------- ? ? ---------------------
R HI2 + R EXT2 R LO2 + R EXT2 ?
?
In Equations 30 and 31, P Qg_Q1 is the total upper gate drive
power loss and P Qg_Q2 is the total lower gate drive power
loss; the gate charge (Q G1 and Q G2 ) is defined at the
particular gate to source drive voltage PVCC in the
corresponding MOSFET data sheet; I Q is the driver total
quiescent current with no load at both drive outputs; N Q1 and
N Q2 are the number of upper and lower MOSFETs per phase,
respectively; N PHASE is the number of active phases. The
I Q* VCC product is the quiescent power of the controller
without capacitive load and is typically 75mW at 300kHz.
27
? R HI2 R LO2 ? P Qg_Q2
N N
R EXT1 = R G1 + ------------- R EXT2 = R G2 + -------------
? R HI1 R LO1 ? P Qg_Q1
3
2
R GI1 R GI2
Q1 Q2
FN9290.5
February 1, 2011
相关PDF资料
PDF描述
ISL6312CRZ-TR5312 IC CTRLR PWM 4PHASE BUCK 48-QFN
ISL6313BIRZ IC CTRLR PWM 2PHASE BUCK 36-QFN
ISL6313IRZ IC CTRLR PWM 2PHASE BUCK 36-QFN
ISL6314IRZ IC CTRLR PWM 1PHASE BUCK 32-QFN
ISL6315IRZ IC REG CTRLR BUCK PWM VM 24-QFN
相关代理商/技术参数
参数描述
ISL6312AIRZ-T 功能描述:IC CTRLR PWM 4PHASE BUCK 48-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - 专用型 系列:- 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:2,000 系列:- 应用:电源,ICERA E400,E450 输入电压:4.1 V ~ 5.5 V 输出数:10 输出电压:可编程 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:42-WFBGA,WLCSP 供应商设备封装:42-WLP 包装:带卷 (TR)
ISL6312CRZ 功能描述:IC CTRLR PWM 4PHASE BUCK 48-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - 专用型 系列:- 标准包装:2,000 系列:- 应用:控制器,DSP 输入电压:4.5 V ~ 25 V 输出数:2 输出电压:最低可调至 1.2V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:30-TFSOP(0.173",4.40mm 宽) 供应商设备封装:30-TSSOP 包装:带卷 (TR)
ISL6312CRZ-T 功能描述:IC CTRLR PWM 4PHASE BUCK 48-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - 专用型 系列:- 标准包装:43 系列:- 应用:控制器,Intel VR11 输入电压:5 V ~ 12 V 输出数:1 输出电压:0.5 V ~ 1.6 V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:48-VFQFN 裸露焊盘 供应商设备封装:48-QFN(7x7) 包装:管件
ISL6312CRZ-TK 功能描述:IC CTRLR PWM 4PHASE BUCK 48-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - 专用型 系列:- 标准包装:43 系列:- 应用:控制器,Intel VR11 输入电压:5 V ~ 12 V 输出数:1 输出电压:0.5 V ~ 1.6 V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:48-VFQFN 裸露焊盘 供应商设备封装:48-QFN(7x7) 包装:管件
ISL6312CRZ-TR5312 功能描述:IC CTRLR PWM 4PHASE BUCK 48-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - 专用型 系列:- 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:2,000 系列:- 应用:电源,ICERA E400,E450 输入电压:4.1 V ~ 5.5 V 输出数:10 输出电压:可编程 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:42-WFBGA,WLCSP 供应商设备封装:42-WLP 包装:带卷 (TR)