参数资料
型号: ISL6333IRZ
厂商: Intersil
文件页数: 26/40页
文件大小: 0K
描述: IC CTRLR PWM 3PHASE BUCK 48-QFN
标准包装: 43
应用: 控制器,Intel VR11
输入电压: 5 V ~ 12 V
输出数: 1
输出电压: 0.5 V ~ 1.6 V
工作温度: -40°C ~ 85°C
安装类型: 表面贴装
封装/外壳: 48-VFQFN 裸露焊盘
供应商设备封装: 48-QFN(7x7)
包装: 管件
ISL6333, ISL6333A, ISL6333B, ISL6333C
Compensating Dynamic VID Transitions
During a VID transition, the resulting change in voltage on the
FB pin and the COMP pin causes an AC current to flow through
the error amplifier compensation components from the FB to
the COMP pin. This current then flows through the feedback
resistor, R FB , and can cause the output voltage to overshoot or
undershoot at the end of the VID transition. In order to ensure
the smooth transition of the output voltage during a VID
change, a VID-on-the-fly compensation network is required.
This network is composed of a resistor and capacitor in series,
R DVC and C DVC , between the DVC and the FB pin.
This VID-on-the-fly compensation network works by
sourcing AC current into the FB node to offset the effects of
the AC current flowing from the FB to the COMP pin during a
VID transition. To create this compensation current the
controllers set the voltage on the DVC pin to be 2x the
voltage on the REF pin. Since the error amplifier forces the
voltage on the FB pin and the REF pin to be equal, the
resulting voltage across the series RC between DVC and FB
is equal to the REF pin voltage. The RC compensation
components, R DVC and C DVC , can then be selected to
create the desired amount of compensation current.
Driver Operation
Adaptive Zero Shoot-Through Deadtime Control
The integrated drivers incorporate an adaptive deadtime control
technique to minimize deadtime and to prevent the upper and
lower MOSFETs from conducting simultaneously. This results
in high efficiency from the reduced freewheeling time of the
lower MOSFET body-diode conduction. This is accomplished
by ensuring either rising gate turns on its MOSFET with
minimum and sufficient delay after the other has turned off.
During turn-off of the lower MOSFET, the LGATE voltage is
monitored until it reaches 1.75V. At this time the UGATE is
released to rise. Once the PHASE is high, the advanced
adaptive shoot-through circuitry monitors the PHASE and
UGATE voltages during a PWM falling edge and the
subsequent UGATE turn-off. If either the UGATE falls to less
than 1.75V above the PHASE or the PHASE falls to less than
+0.8V, the LGATE is released to turn on.
Internal Bootstrap Device
All three integrated drivers feature an internal bootstrap
schottky diode. Simply adding an external capacitor across
the BOOT and PHASE pins completes the bootstrap circuit.
VDIFF
R FB
I DVC
I DVC = I C
I C
The bootstrap function is also designed to prevent the
bootstrap capacitor from overcharging due to the large
negative swing at the PHASE node. This reduces voltage
stress on the boot to phase pins.
DVC
C DVC
R DVC
FB
C C
R C
COMP
The bootstrap capacitor should have a maximum voltage
rating that’s at least 30% above PVCC and its capacitance
value can be chosen from Equation 18:
+
C BOOT_CAP ≥ --------------------------------------
Δ V BOOT_CAP
Q GATE = ---------------------------------- ? N Q1
REF
C REF
V DAC
x2
-
ERROR
AMPLIFIER
ISL6333 INTERNAL CIRCUIT
Q GATE
(EQ. 18)
Q G1 ? PVCC
V GS1
where Q G1 is the amount of gate charge per upper MOSFET
FIGURE 10. DYNAMIC VID COMPENSATION NETWORK
The amount of compensation current required is dependant on
the modulator gain of the system, K1, and the error amplifier R-
C components, R C and C C , that are in series between the FB
and COMP pins. Use Equations 15, 16, and 17 to calculate the
RC component values, R DVC and C DVC , for the VID-on-the-fly
compensation network. For these equations: V IN is the input
voltage for the power train; V P-P is the oscillator ramp
amplitude (1.5V); and R C and C C are the error amplifier R-C
components between the FB and COMP pins.
at V GS1 gate-source voltage and N Q1 is the number of
control MOSFETs. The Δ V BOOT_CAP term is defined as the
allowable droop in the rail of the upper gate drive.
1.6
1.4
1.2
1.0
0.8
V IN
A = -----------------
K1 = -----------
V PP
K1
K1 – 1
(EQ. 15)
0.6
0.4
Q GATE = 100nC
R DVC = A × R C
(EQ. 16)
0.2
20nC
50nC
C DVC = --------
C C
A
(EQ. 17)
0.0
0.0
0.1
0.2
0.3
0.4 0.5 0.6
Δ V BOOT_CAP (V)
0.7
0.8
0.9
1.0
FIGURE 11. BOOTSTRAP CAPACITANCE vs BOOT RIPPLE
VOLTAGE
26
FN6520.3
October 8, 2010
相关PDF资料
PDF描述
ISL6334AIRZR5368 IC CTRLR PWM 4PHASE BUCK 40QFN
ISL6334BIRZ-T IC CTRLR PWM SYNC BUCK 40-QFN
ISL6334CRZ IC CTRLR PWM 4PHASE BUCK 40-QFN
ISL6334DIRZ IC CTRLR PWM 4PHASE VR11.1 40QFN
ISL6336BCRZ IC CTRLR PWM SYNC BUCK 48-QFN
相关代理商/技术参数
参数描述
ISL6333IRZ-T 功能描述:IC CTRLR PWM 3PHASE BUCK 48-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - 专用型 系列:- 标准包装:43 系列:- 应用:控制器,Intel VR11 输入电压:5 V ~ 12 V 输出数:1 输出电压:0.5 V ~ 1.6 V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:48-VFQFN 裸露焊盘 供应商设备封装:48-QFN(7x7) 包装:管件
ISL6334ACRZ 功能描述:IC CTRLR PWM 4PHASE BUCK 40-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - 专用型 系列:- 标准包装:43 系列:- 应用:控制器,Intel VR11 输入电压:5 V ~ 12 V 输出数:1 输出电压:0.5 V ~ 1.6 V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:48-VFQFN 裸露焊盘 供应商设备封装:48-QFN(7x7) 包装:管件
ISL6334ACRZR5368 功能描述:IC CTRLR PWM 4PHASE BUCK 40QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - 专用型 系列:- 标准包装:43 系列:- 应用:控制器,Intel VR11 输入电压:5 V ~ 12 V 输出数:1 输出电压:0.5 V ~ 1.6 V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:48-VFQFN 裸露焊盘 供应商设备封装:48-QFN(7x7) 包装:管件
ISL6334ACRZ-T 功能描述:IC CTRLR PWM 4PHASE BUCK 40-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - 专用型 系列:- 标准包装:43 系列:- 应用:控制器,Intel VR11 输入电压:5 V ~ 12 V 输出数:1 输出电压:0.5 V ~ 1.6 V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:48-VFQFN 裸露焊盘 供应商设备封装:48-QFN(7x7) 包装:管件
ISL6334ACRZ-TR5368 功能描述:IC CTRLR PWM 4PHASE BUCK 40QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 稳压器 - 专用型 系列:- 标准包装:43 系列:- 应用:控制器,Intel VR11 输入电压:5 V ~ 12 V 输出数:1 输出电压:0.5 V ~ 1.6 V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:48-VFQFN 裸露焊盘 供应商设备封装:48-QFN(7x7) 包装:管件