参数资料
型号: MAX15003ATM+T
厂商: Maxim Integrated Products
文件页数: 19/31页
文件大小: 0K
描述: IC REG CTRLR BUCK PWM 48TQFN-EP
产品培训模块: Lead (SnPb) Finish for COTS
Obsolescence Mitigation Program
标准包装: 2,500
PWM 型: 电压模式
输出数: 3
频率 - 最大: 2.2MHz
电源电压: 5.5 V ~ 23 V
降压:
升压:
回扫:
反相:
倍增器:
除法器:
Cuk:
隔离:
工作温度: -40°C ~ 125°C
封装/外壳: 48-WFQFN 裸露焊盘
包装: 带卷 (TR)
MAX15003
Triple-Output Buck Controller with
Tracking/Sequencing
? V ESR
? I P ? P ?
?
? I LOAD ( MAX ) + ?
? I P ? P
8 × ? V Q SW
× f
2 × ? V ESR
? I P ? P
Input Capacitor Selection
The discontinuous input current of the buck converter
causes large input ripple currents, and therefore, the
input capacitor must be carefully chosen to withstand
the input ripple current and keep the input voltage rip-
ple within design requirements. The 120° ripple phase
operation increases the frequency of the input capaci-
tor ripple current to thrice the individual converter
switching frequency. When using ripple phasing, the
worst-case input capacitor ripple current is when the
one converter with the highest output current is on.
The input voltage ripple comprises ? V Q (caused by the
capacitor discharge) and ? V ESR (caused by the ESR of
the input capacitor). The total voltage ripple is the sum of
? V Q and ? V ESR which peaks at the end of the on-cycle.
Calculate the input capacitance and ESR required for a
specified ripple using the following equations:
E SR =
? 2 ?
the required output capacitance and its ESR. The output
ripple is mainly composed of ? V Q (caused by the capaci-
tor discharge) and ? V ESR (caused by the voltage drop
across the equivalent series resistance of the output
capacitor). The equations for calculating the output
capacitance and its ESR are:
C OUT =
E SR =
? V ESR and ? V Q are not directly additive because they
are out of phase from each other. If using ceramic
capacitors, which generally have low ESR, ? V Q domi-
nates. If using electrolytic capacitors, ? V ESR domi-
nates.
The allowable deviation of the output voltage during
fast load transients also affects the output capacitance,
its ESR, and its equivalent series inductance (ESL). The
I LOAD ( MAX ) × ? OUT ?
where:
CIN =
? V ?
? V IN ?
? V Q × f SW
output capacitor supplies the load current during a
load step until the controller responds with a greater
duty cycle. The response time (t RESPONSE ) depends on
the gain bandwidth of the converter (see the
Compensation Design Guidelines section). The resis-
tive drop across the output capacitor’s ESR, the drop
( V IN ? V OUT ) × V OUT
? I P ? P =
V OUT × ( V IN ? V OUT )
? V ESR
C OUT = STEP RESPONSE
V IN × f SW × L
I LOAD(MAX) is the maximum output current, ? I P-P is the
peak-to-peak inductor current, and f SW is the switching
frequency.
For the condition with only one converter is on, calculate
the input ripple current using the following equation:
I CIN ( RMS ) = ILOAD ( MAX ) ×
V IN
The MAX15003 includes UVLO hysteresis to avoid pos-
sible unintentional chattering during turn-on. Use addi-
tional bulk capacitance if the input source impedance is
high. At lower input voltage, additional input capaci-
across the capacitor ’s ESL, and the capacitor dis-
charge cause a voltage droop during the load-step
(I STEP ). Use a combination of low-ESR tantalum/alu-
minum electrolytic and ceramic capacitors for better
load-transient and voltage-ripple performance. Surface-
mount capacitors and capacitors in parallel help
reduce the ESL. Keep the maximum output voltage
deviation below the tolerable limits of the electronics
being powered.
Use the following equations to calculate the required
ESR, ESL, and capacitance value during a load step:
E SR =
I STEP
I × t
? V Q
tance helps avoid possible undershoot below the under-
voltage lockout threshold during transient loading.
E SL =
? V ESL × t STEP
I STEP
Output Capacitor Selection
The allowed output voltage ripple and the maximum devi-
ation of the output voltage during load steps determine
Maxim Integrated
where I STEP is the load step, t STEP is the rise time of the
load step, and t RESPONSE is the response time of the
controller.
19
相关PDF资料
PDF描述
MAX15005AAUE/V+ IC REG CTRLR PWM CM 16-TSSOP
MAX15006BASA+ IC REG LDO 5V 50MA 8-SOIC
MAX15008ATJ+ IC REG LDO 5V/ADJ .3A 32TQFN-EP
MAX15009ATJ+ IC REG LDO 5V/ADJ .3A 32TQFN-EP
MAX1501ETE/V+ IC BATTERY CHARGER 16WQFN
相关代理商/技术参数
参数描述
MAX15003EVKIT+ 功能描述:电源管理IC开发工具 MAX15003 Eval Kit RoHS:否 制造商:Maxim Integrated 产品:Evaluation Kits 类型:Battery Management 工具用于评估:MAX17710GB 输入电压: 输出电压:1.8 V
MAX15004AAUE/V+ 功能描述:电流型 PWM 控制器 Flyback/Boost/SEPIC Power-Supply Ctlr RoHS:否 制造商:Texas Instruments 开关频率:27 KHz 上升时间: 下降时间: 工作电源电压:6 V to 15 V 工作电源电流:1.5 mA 输出端数量:1 最大工作温度:+ 105 C 安装风格:SMD/SMT 封装 / 箱体:TSSOP-14
MAX15004AAUE/V+T 功能描述:电流型 PWM 控制器 Flyback/Boost/SEPIC Power-Supply Ctlr RoHS:否 制造商:Texas Instruments 开关频率:27 KHz 上升时间: 下降时间: 工作电源电压:6 V to 15 V 工作电源电流:1.5 mA 输出端数量:1 最大工作温度:+ 105 C 安装风格:SMD/SMT 封装 / 箱体:TSSOP-14
MAX15004AAUE+ 功能描述:电流型 PWM 控制器 Flyback/Boost/SEPIC Power-Supply Ctlr RoHS:否 制造商:Texas Instruments 开关频率:27 KHz 上升时间: 下降时间: 工作电源电压:6 V to 15 V 工作电源电流:1.5 mA 输出端数量:1 最大工作温度:+ 105 C 安装风格:SMD/SMT 封装 / 箱体:TSSOP-14
MAX15004AAUE+T 功能描述:电流型 PWM 控制器 Flyback/Boost/SEPIC Power-Supply Ctlr RoHS:否 制造商:Texas Instruments 开关频率:27 KHz 上升时间: 下降时间: 工作电源电压:6 V to 15 V 工作电源电流:1.5 mA 输出端数量:1 最大工作温度:+ 105 C 安装风格:SMD/SMT 封装 / 箱体:TSSOP-14