参数资料
型号: MAX17030EVKIT+
厂商: Maxim Integrated Products
文件页数: 33/39页
文件大小: 0K
描述: EVALUATION KIT FOR MAX17030
产品培训模块: Lead (SnPb) Finish for COTS
Obsolescence Mitigation Program
标准包装: 1
系列: Quick-PWM™
主要目的: DC/DC,步降
输出及类型: 1,非隔离
输出电压: 0 ~ 1.5 V
输入电压: 7 ~ 26 V
稳压器拓扑结构: 降压
板类型: 完全填充
已供物品:
已用 IC / 零件: MAX17030
1/2/3-Phase Quick-PWM
IMVP-6.5 VID Controllers
?
Maximum load current: There are two values to
BST_
DH_
LX_
(R BST )*
C BST
N H
INPUT (V IN )
L
consider. The peak load current (I LOAD(MAX) ) deter-
mines the instantaneous component stresses and
filtering requirements, and thus drives output
capacitor selection, inductor saturation rating, and
the design of the current-limit circuit. The continu-
ous load current (I LOAD ) determines the thermal
stresses and thus drives the selection of input
I LOAD ( PHASE ) = LOAD
V DD
DL_
PGND
MAX17030/MAX17036
C BYP
(C NL )*
N L
capacitors, MOSFETs, and other critical heat-con-
tributing components. Modern notebook CPUs gen-
erally exhibit I LOAD = I LOAD(MAX) x 80%.
For multiphase systems, each phase supports a
fraction of the load, depending on the current bal-
ancing. When properly balanced, the load current is
evenly distributed among each phase:
I
η TOTAL
(R BST )* OPTIONAL—THE RESISTOR LOWERS EMI BY DECREASING THE
SWITCHING NODE RISE TIME.
(C NL )* OPTIONAL—THE CAPACITOR REDUCES LX TO DL CAPACITIVE
COUPLING THAT CAN CAUSE SHOOT-THROUGH CURRENT.
Figure 10. Gate Drive Circuit
Shoot-through currents can also be caused by a com-
bination of fast high-side MOSFETs and slow low-side
MOSFETs. If the turn-off delay time of the low-side
MOSFET is too long, the high-side MOSFETs can turn
on before the low-side MOSFETs have actually turned
off. Adding a resistor less than 5 Ω in series with BST
slows down the high-side MOSFET turn-on time, elimi-
nating the shoot-through currents without degrading the
turn-off time (R BST in Figure 10). Slowing down the
high-side MOSFET also reduces the LX node rise time,
thereby reducing EMI and high-frequency coupling
responsible for switching noise.
?
?
where η TOTAL is the total number of active phases.
Switching frequency: This choice determines the
basic trade-off between size and efficiency. The
optimal frequency is largely a function of maximum
input voltage, due to MOSFET switching losses that
are proportional to frequency and V IN 2 . The opti-
mum frequency is also a moving target, due to
rapid improvements in MOSFET technology that are
making higher frequencies more practical.
Inductor operating point: This choice provides
trade-offs between size vs. efficiency and transient
response vs. output noise. Low inductor values pro-
vide better transient response and smaller physical
size, but also result in lower efficiency and higher
output noise due to increased ripple current. The
minimum practical inductor value is one that causes
the circuit to operate at the edge of critical conduc-
Multiphase Quick-PWM
Design Procedure
Firmly establish the input voltage range and maximum
load current before choosing a switching frequency and
inductor operating point (ripple-current ratio). The pri-
mary design trade-off lies in choosing a good switching
frequency and inductor operating point, and the following
four factors dictate the rest of the design:
tion (where the inductor current just touches zero
with every cycle at maximum load). Inductor values
lower than this grant no further size-reduction bene-
fit. The optimum operating point is usually found
between 30% and 50% ripple current. for a multi-
phase core regulator, select an LIR value of ~0.4.
Inductor Selection
The switching frequency and operating point (% ripple
current or LIR) determine the inductor value as follows:
V IN ? V OUT
L = η TOTAL ? ? ? ?
? f SW LOAD ( MAX ) LIR ? ? V I N ?
?
Input voltage range: The maximum value
(V IN(MAX) ) must accommodate the worst-case high
AC adapter voltage. The minimum value (V IN(MIN) )
must account for the lowest input voltage after
drops due to connectors, fuses, and battery selec-
tor switches. If there is a choice at all, lower input
voltages result in better efficiency.
? ? ? V OUT ?
I
where η TOTAL is the total number of phases.
______________________________________________________________________________________
33
相关PDF资料
PDF描述
RCC06DRAH CONN EDGECARD 12POS R/A .100 SLD
RBC12DRXH CONN EDGECARD 24POS DIP .100 SLD
RBC10DCSN CONN EDGECARD 20POS DIP .100 SLD
RBC10DRTS CONN EDGECARD 20POS DIP .100 SLD
RCC12DCMS CONN EDGECARD 24POS .100 WW
相关代理商/技术参数
参数描述
MAX17030EVKIT+ 功能描述:电源管理IC开发工具 MAX17030 Eval Kit RoHS:否 制造商:Maxim Integrated 产品:Evaluation Kits 类型:Battery Management 工具用于评估:MAX17710GB 输入电压: 输出电压:1.8 V
MAX17030GTL+ 功能描述:电压模式 PWM 控制器 1/2/3-Phase PWM IMVP-6.5 VID Ctlr RoHS:否 制造商:Texas Instruments 输出端数量:1 拓扑结构:Buck 输出电压:34 V 输出电流: 开关频率: 工作电源电压:4.5 V to 5.5 V 电源电流:600 uA 最大工作温度:+ 125 C 最小工作温度:- 40 C 封装 / 箱体:WSON-8 封装:Reel
MAX17030GTL+T 功能描述:电压模式 PWM 控制器 1/2/3-Phase PWM IMVP-6.5 VID Ctlr RoHS:否 制造商:Texas Instruments 输出端数量:1 拓扑结构:Buck 输出电压:34 V 输出电流: 开关频率: 工作电源电压:4.5 V to 5.5 V 电源电流:600 uA 最大工作温度:+ 125 C 最小工作温度:- 40 C 封装 / 箱体:WSON-8 封装:Reel
MAX17031ETG+ 功能描述:电压模式 PWM 控制器 Dual PWM Step-Down Controller RoHS:否 制造商:Texas Instruments 输出端数量:1 拓扑结构:Buck 输出电压:34 V 输出电流: 开关频率: 工作电源电压:4.5 V to 5.5 V 电源电流:600 uA 最大工作温度:+ 125 C 最小工作温度:- 40 C 封装 / 箱体:WSON-8 封装:Reel
MAX17031ETG+T 功能描述:电压模式 PWM 控制器 Dual PWM Step-Down Controller RoHS:否 制造商:Texas Instruments 输出端数量:1 拓扑结构:Buck 输出电压:34 V 输出电流: 开关频率: 工作电源电压:4.5 V to 5.5 V 电源电流:600 uA 最大工作温度:+ 125 C 最小工作温度:- 40 C 封装 / 箱体:WSON-8 封装:Reel