参数资料
型号: MAX17030EVKIT+
厂商: Maxim Integrated Products
文件页数: 35/39页
文件大小: 0K
描述: EVALUATION KIT FOR MAX17030
产品培训模块: Lead (SnPb) Finish for COTS
Obsolescence Mitigation Program
标准包装: 1
系列: Quick-PWM™
主要目的: DC/DC,步降
输出及类型: 1,非隔离
输出电压: 0 ~ 1.5 V
输入电压: 7 ~ 26 V
稳压器拓扑结构: 降压
板类型: 完全填充
已供物品:
已用 IC / 零件: MAX17030
1/2/3-Phase Quick-PWM
IMVP-6.5 VID Controllers
? η TOTAL OUT IN TOT A L OUT )
( V ? η
I RMS = ?
? η TOTAL V IN ?
L ( Δ I LOAD(MAX) ) 2 T MIN
?? KT S W ? T MIN ??
V SAG ≈ ×
However, it can indicate the possible presence of loop
instability due to insufficient ESR. Loop instability can
result in oscillations at the output after line or load
steps. Such perturbations are usually damped, but can
cause the output voltage to rise above or fall below the
tolerance limits.
The easiest method for checking stability is to apply a
very fast 10% to 90% max load transient and carefully
observe the output voltage ripple envelope for over-
shoot and ringing. It can help to simultaneously monitor
the inductor current with an AC current probe. Do not
allow more than one cycle of ringing after the initial
step-response under/overshoot.
Transient Response
The inductor ripple current impacts transient-response
performance, especially at low V IN - V OUT differentials.
Low inductor values allow the inductor current to slew
faster, replenishing charge removed from the output fil-
ter capacitors by a sudden load step. The amount of
output sag is also a function of the maximum duty fac-
tor, which can be calculated from the on-time and mini-
mum off-time. For a dual-phase controller, the
worst-case output sag voltage can be determined by:
2 η TOTAL C OUT V OUT
Input Capacitor Selection
The input capacitor must meet the ripple current
requirement (I RMS ) imposed by the switching currents.
The multiphase Quick-PWM controllers operate out-of-
phase, reducing the RMS input. For duty cycles less
than 100%/ η OUTPH per phase, the I RMS requirements
can be determined by the following equation:
? I LOAD ?
V V
where η TOTAL is the total number of out-of-phase
switching regulators. The worst-case RMS current
requirement occurs when operating with V IN =
2 η TOTAL V OUT . At this point, the above equation simpli-
fies to I RMS = 0.5 x I LOAD / η TOTAL . Choose an input
capacitor that exhibits less than +10 ° C temperature rise
at the RMS input current for optimal circuit longevity.
Power-MOSFET Selection
Most of the following MOSFET guidelines focus on the
challenge of obtaining high load-current capability
when using high-voltage (> 20V) AC adapters.
High-Side MOSFET Power Dissipation
The conduction loss in the high-side MOSFET (N H ) is a
function of the duty factor, with the worst-case power
dissipation occurring at the minimum input voltage:
? ? I
?
? V
PD (NH Resistive) = ? OUT ? ? LOAD ? R DS ( ON )
and:
T MIN = t ON + t OFF ( MIN )
? V IN ? ? η TOTA L ?
2
( Δ I LOAD ( MAX ) ) 2 L
2 η TOTAL OUT OUT
V SOAR ≈
PD (NH Switching) = ? IN LOAD SW ? ?
η TOTAL
?
? ? I GATE ?
C V f
where  t OFF(MIN) is  the  minimum  off-time  (see  the
Electrical Characteristics ), T SW is the programmed
switching period, and η TOTAL is the total number of
active phases. K = 66% when N PH = 3, and K = 100%
when N PH = 2. V SAG must be less than the transient
droop Δ I LOAD(MAX) x R DROOP .
The capacitive soar voltage due to stored inductor
energy can be calculated as:
C V
where η TOTAL is the total number of active phases. The
actual peak of the soar voltage is dependent on the
time where the decaying ESR step and rising capaci-
tive soar is at its maximum. This is best simulated or
measured. For the MAX17036 with transient suppres-
sion, contact Maxim directly for application support to
determine the output capacitance requirement.
where η TOTAL is the total number of phases.
Calculating the switching losses in the high-side
MOSFET (N H ) is difficult since it must allow for difficult
quantifying factors that influence the turn-on and turn-
off times. These factors include the internal gate resis-
tance, gate charge, threshold voltage, source
inductance, and PCB layout characteristics. The follow-
ing switching-loss calculation provides only a very
rough estimate and is no substitute for breadboard
evaluation, preferably including verification using a
thermocouple mounted on N H :
? V I f ? ? Q G(SW ) ?
?
2
+ OSS IN SW
2
where C OSS is the N H MOSFET’s output capacitance,
Q G(SW) is the charge needed to turn on the N H
MOSFET, and I GATE is the peak gate-drive source/sink
current (2.2A typ).
______________________________________________________________________________________
35
相关PDF资料
PDF描述
RCC06DRAH CONN EDGECARD 12POS R/A .100 SLD
RBC12DRXH CONN EDGECARD 24POS DIP .100 SLD
RBC10DCSN CONN EDGECARD 20POS DIP .100 SLD
RBC10DRTS CONN EDGECARD 20POS DIP .100 SLD
RCC12DCMS CONN EDGECARD 24POS .100 WW
相关代理商/技术参数
参数描述
MAX17030EVKIT+ 功能描述:电源管理IC开发工具 MAX17030 Eval Kit RoHS:否 制造商:Maxim Integrated 产品:Evaluation Kits 类型:Battery Management 工具用于评估:MAX17710GB 输入电压: 输出电压:1.8 V
MAX17030GTL+ 功能描述:电压模式 PWM 控制器 1/2/3-Phase PWM IMVP-6.5 VID Ctlr RoHS:否 制造商:Texas Instruments 输出端数量:1 拓扑结构:Buck 输出电压:34 V 输出电流: 开关频率: 工作电源电压:4.5 V to 5.5 V 电源电流:600 uA 最大工作温度:+ 125 C 最小工作温度:- 40 C 封装 / 箱体:WSON-8 封装:Reel
MAX17030GTL+T 功能描述:电压模式 PWM 控制器 1/2/3-Phase PWM IMVP-6.5 VID Ctlr RoHS:否 制造商:Texas Instruments 输出端数量:1 拓扑结构:Buck 输出电压:34 V 输出电流: 开关频率: 工作电源电压:4.5 V to 5.5 V 电源电流:600 uA 最大工作温度:+ 125 C 最小工作温度:- 40 C 封装 / 箱体:WSON-8 封装:Reel
MAX17031ETG+ 功能描述:电压模式 PWM 控制器 Dual PWM Step-Down Controller RoHS:否 制造商:Texas Instruments 输出端数量:1 拓扑结构:Buck 输出电压:34 V 输出电流: 开关频率: 工作电源电压:4.5 V to 5.5 V 电源电流:600 uA 最大工作温度:+ 125 C 最小工作温度:- 40 C 封装 / 箱体:WSON-8 封装:Reel
MAX17031ETG+T 功能描述:电压模式 PWM 控制器 Dual PWM Step-Down Controller RoHS:否 制造商:Texas Instruments 输出端数量:1 拓扑结构:Buck 输出电压:34 V 输出电流: 开关频率: 工作电源电压:4.5 V to 5.5 V 电源电流:600 uA 最大工作温度:+ 125 C 最小工作温度:- 40 C 封装 / 箱体:WSON-8 封装:Reel