参数资料
型号: MAX1717EEG+
厂商: Maxim Integrated Products
文件页数: 28/33页
文件大小: 0K
描述: IC REG CTRLR BUCK PWM CM 24-QSOP
产品培训模块: Lead (SnPb) Finish for COTS
Obsolescence Mitigation Program
标准包装: 50
PWM 型: 电流模式
输出数: 1
频率 - 最大: 1MHz
占空比: 100%
电源电压: 4.5 V ~ 5.5 V
降压:
升压:
回扫:
反相:
倍增器:
除法器:
Cuk:
隔离:
工作温度: -40°C ~ 85°C
封装/外壳: 24-SSOP(0.154",3.90mm 宽)
包装: 管件
Dynamically Adjustable, Synchronous
Step-Down Controller for Notebook CPUs
Application Issues
Voltage Positioning and
Effective Efficiency
Powering new mobile processors requires new tech-
niques to reduce cost, size, and power dissipation.
Voltage positioning reduces the total number of output
capacitors to meet a given transient response require-
ment. Setting the no-load output voltage slightly higher
allows a larger step down when the output current sud-
denly increases, and regulating at the lower output volt-
age under load allows a larger step up when the output
current suddenly decreases. Allowing a larger step size
means that the output capacitance can be reduced
and the capacitor’s ESR can be increased.
The no-load output voltage is raised by adding a fixed
offset to GNDS through a resistor divider from REF. A
27mV nominal value is appropriate for 1.6V applications.
This 27mV corresponds to a 0.9 x 27mV = 24mV =
1.5% increase with a V OUT of 1.6V. In the voltage-posi-
tioned circuit (Figure 3), this is realized with resistors R4
and R5. Use a 10μA resistor divider current.
Adding a series output resistor positions the full-load out-
put voltage below the actual DAC programmed voltage.
Connect FB and FBS directly to the inductor side of the
voltage-positioning resistor (R6, 5m Ω ). The other side of
the voltage-positioning resistor should be tied directly to
the output filter capacitor with a short, wide PC board
trace. With a 14A full-load current, R6 causes a 70mV
drop. This 70mV is a -4.4% error, but it is compensated
by the +1.5% error from the GNDS offset, resulting in a
net error of -2.9%. This is well within the typical specifica-
tion for voltage accuracy.
An additional benefit of voltage positioning is reduced
Effective efficiency is defined as the efficiency required
of a nonvoltage-positioned circuit to equal the total dis-
sipation of a voltage-positioned circuit for a given CPU
operating condition.
Calculate effective efficiency as follows:
1) Start with the efficiency data for the positioned circuit
(V IN , I IN , V OUT , I OUT ).
2) Model the load resistance for each data point:
R LOAD = V OUT / I OUT
3) Calculate the output current that would exist for each
R LOAD data point in a nonpositioned application:
I NP = V NP / R LOAD
where V NP = 1.6V (in this example).
4) Calculate effective efficiency as:
Effective efficiency = (V NP x I NP ) / (V IN x I IN ) =
calculated nonpositioned power output divided by
the measured voltage-positioned power input.
5) Plot the efficiency data point at the nonpositioned
current, I NP .
The effective efficiency of voltage-positioned circuits is
shown in the Typical Operating Characteristics .
V BATT
DH
power consumption at high load currents. Because the
output voltage is lower under load, the CPU draws less
current. The result is lower power dissipation in the
CPU, though some extra power is dissipated in R6. For
a nominal 1.6V, 12A output, reducing the output volt-
age 2.9% gives an output voltage of 1.55V and an out-
put current of 11.65A. Given these values, CPU power
consumption is reduced from 19.2W to 18.1W. The
MAX1717
FB
DL
R1
V OUT
additional power consumption of R6 is:
5m Ω x 11.65A 2 = 0.68W
180k Ω
FBS
GND
R2
R2
and the overall power savings is as follows:
19.2 - (18.1 + 0.68) = 0.42W
GNDS
1k Ω
)
In effect, 1W of CPU dissipation is saved and the power
supply dissipates much of the savings, but both the net
savings and the transfer of dissipation away from the
V OUT = V FB x ( 1 +
R1
R2 || 180k Ω
hot CPU are beneficial.
Figure 11. Adjusting V OUT with a Resistor-Divider
28
______________________________________________________________________________________
相关PDF资料
PDF描述
MAX1720EUT IC REG SWITCHD CAP INV ADJ 6TSOP
MAX1721EUT-T IC REG SWITCHED CAP INV SOT23-6
MAX1724EZK50-T IC REG BST SYNC 5V .15A TSOT23-5
MAX1725EUK+T IC REG LDO ADJ 20MA SOT23-5
MAX1729EUB IC REG BUCK BST ADJ 2.5MA 10UMAX
相关代理商/技术参数
参数描述
MAX1717EEG+ 功能描述:DC/DC 开关控制器 Adj Synchronous Step-Down RoHS:否 制造商:Texas Instruments 输入电压:6 V to 100 V 开关频率: 输出电压:1.215 V to 80 V 输出电流:3.5 A 输出端数量:1 最大工作温度:+ 125 C 安装风格: 封装 / 箱体:CPAK
MAX1717EEG+C71058 功能描述:DC/DC 开关控制器 Step-Down Controller for Notebook CPU RoHS:否 制造商:Texas Instruments 输入电压:6 V to 100 V 开关频率: 输出电压:1.215 V to 80 V 输出电流:3.5 A 输出端数量:1 最大工作温度:+ 125 C 安装风格: 封装 / 箱体:CPAK
MAX1717EEG+T 功能描述:DC/DC 开关控制器 Adj Synchronous Step-Down RoHS:否 制造商:Texas Instruments 输入电压:6 V to 100 V 开关频率: 输出电压:1.215 V to 80 V 输出电流:3.5 A 输出端数量:1 最大工作温度:+ 125 C 安装风格: 封装 / 箱体:CPAK
MAX1717EEG-C71058 制造商:Rochester Electronics LLC 功能描述: 制造商:Maxim Integrated Products 功能描述:
MAX1717EEG-T 功能描述:DC/DC 开关控制器 RoHS:否 制造商:Texas Instruments 输入电压:6 V to 100 V 开关频率: 输出电压:1.215 V to 80 V 输出电流:3.5 A 输出端数量:1 最大工作温度:+ 125 C 安装风格: 封装 / 箱体:CPAK