参数资料
型号: S80486-DX4-75-S-V-8-B
厂商: ADVANCED MICRO DEVICES INC
元件分类: 微控制器/微处理器
英文描述: 32-BIT, 75 MHz, MICROPROCESSOR, PQFP208
封装: SQFP-208
文件页数: 15/69页
文件大小: 1070K
代理商: S80486-DX4-75-S-V-8-B
Enhanced Am486 Microprocessor
AMD
22
PRELIMINARY
4.8.2.2
HOLD Bus Arbitration Implementation
The HOLD/HLDA bus arbitration scheme is used prima-
rily in systems where all memory transfers are seen by
the microprocessor. The HOLD/HLDA bus arbitration
scheme permits simple write-back cache design while
maintaining a relatively high performing system. Figure
3 shows a typical system block diagram for HOLD/
HLDA bus arbitration.
Note: To maintain proper system timing, the HOLD
signal must remain active for one clock cycle after HITM
transitions active. Deassertion of HOLD in the same
clock cycle as HITM assertion may lead to unpredictable
processor behavior.
4.8.2.2.1 Processor-Induced Bus Cycles
In the following scenarios, read accesses are assumed
to be cache line fills. The cases also assume that the
core system logic does not return BRDY or RDY until
HITM is sampled. The addition of wait states follows the
standard 486 bus protocol. For demonstration purpos-
es, only the zero wait state approach is shown. Table 6
explains the key to switching waveforms.
CPU
L2 Cache
DRAM
Local Bus
Peripheral
I/O Bus
Interface
Slow
Peripheral
Address Bus
Data Bus
Address Bus
Data Bus
Figure 3. Typical System Block Diagram
for HOLD/HLDA Bus Arbitration
4.8.2.2.2 External Read
Scenario: The data resides in external memory (see
Figure 4).
Step 1 The processor starts the external read access
by asserting ADS = 0 and W/R = 0.
Step 2 WB/WT is sampled in the same cycle as BRDY. If
WB/WT = 1, the data resides in a write-back cache-
able memory location.
Step 3 The processor completes its burst read and as-
serts BLAST.
4.8.2.2.3 External Write
Scenario: The data is written to the external memory
(see Figure 5).
Step 1 The processor starts the external write access
by asserting ADS = 0 and W/R = 1.
Step 2 The processor completes its write to the core
system logic.
4.8.2.2.4 HOLD/HLDA External Access TIming
In systems with two or more bus masters, each bus
master is equipped with individual HOLD and HLDA
control signals. These signals are then centralized to
the core system logic that controls individual bus mas-
ters, depending on bus request signals and the HITM
signal.
Table 6. Key to Switching Waveforms
Waveform
Inputs
Outputs
Must be steady
Will be steady
May change from
H to L
Will change
from H to L
May change from
L to H
Will change
from L to H
Don’t care; any
change permitted
Changing;
state unknown
Does not apply
Center line is
High-impedance
“Off” state
相关PDF资料
PDF描述
S80960SA-16 32-BIT, 16 MHz, RISC PROCESSOR, PQFP80
S80960SB-10 32-BIT, 10 MHz, RISC PROCESSOR, PQFP80
S80C186XL12 16-BIT, 12 MHz, MICROPROCESSOR, PQFP80
S80C186XL25 16-BIT, 25 MHz, MICROPROCESSOR, PQFP80
S80C186XL20 16-BIT, 20 MHz, MICROPROCESSOR, PQFP80
相关代理商/技术参数
参数描述
S8049CR4 WAF 制造商:Intel 功能描述:
S8049CRA4 WAF 制造商:Intel 功能描述:
S804PV-M63 制造商:ABB Control 功能描述:S 800 PV-M 4pole 63A (1200V dc) MCB
S804PV-S10 制造商:ABB Control 功能描述:MCB S 800 PV-S 4 POLE 10A (800VDC) 制造商:ABB Control 功能描述:MCB, S 800 PV-S 4 POLE 10A (800VDC)
S804PV-S16 制造商:ABB Control 功能描述:MCB S 800 PV-S 4 POLE 16A (800VDC) 制造商:ABB Control 功能描述:MCB, S 800 PV-S 4 POLE 16A (800VDC)