参数资料
型号: 71M6533H-IGT/F
厂商: TERIDIAN SEMICONDUCTOR CORP
元件分类: 模拟信号调理
英文描述: SPECIALTY ANALOG CIRCUIT, PQFP100
封装: LEAD FREE, LQFP-100
文件页数: 57/124页
文件大小: 2008K
代理商: 71M6533H-IGT/F
71M6533/71M6534 Data Sheet
FDS_6533_6534_004
38
2007-2009 TERIDIAN Semiconductor Corporation
v1.1
The PLL has a 2x emulator clock which is controlled by ECK_DIS. Since clock noise from this feature
may disturb the ADC, it is recommended that this option be avoided when possible.
The MPU clock frequency CKMPU is determined by another divider controlled by the I/O RAM register
MPU_DIV and can be set to MCK/2
(MPU_DIV+2) Hz where MPU_DIV varies from 0 to 6. The circuit also ge-
nerates the 2 x CKMPU clock for use by the emulator. The emulator clock is not generated when
ECK_DIS is asserted.
During a power-on reset, [M40MHZ, M26MHZ] defaults to [0,0], and the MCK divider is set to divide by 4.
When [M40MHZ, M26MHZ] = [1,0], the CE clock frequency may be set to 5 MHz or 10 MHz, using the I/O
RAM register CE10MHZ. In this mode, the ADC and FIR clock frequencies remain at 5 MHz. When
[M40MHZ, M26MHZ] = [0,1], the CE, ADC, FIR, and MPU clock frequencies are shifted to 6.6 MHz. This
increases the ADC sample rate by 33%. In sleep mode, the M40MHZ and M26MHZ inputs to the clock
generator are forced low.
In brownout mode, the clocks are derived from the crystal oscillator, and the clock frequencies are scaled
by 7/8.
1.4.3
Real-Time Clock (RTC)
The RTC is driven directly by the crystal oscillator. It is powered by the net RTC_NV (battery-backed up
supply). The RTC consists of a counter chain and output registers. The counter chain consists of regis-
ters for seconds, minutes, hours, day of week, day of month, month, and year. The RTC is capable of
processing leap years. Each counter has its own output register. The RTC registers will not be affected
by the reset pin, watchdog timer resets, or by transitions between the battery modes and mission mode.
Whenever the MPU reads the seconds register, all other output registers are automatically updated.
Since the RTC clock is not coherent to the MPU clock, the MPU must read the seconds register until two
consecutive reads are the same (this requires either 2 or 3 reads). At this point, all RTC output registers
will have the correct time. Regardless of the MPU clock speed, RTC reads require one wait state.
RTC time is set by writing to the RTC_SEC through RTC_YR registers. Each write operation must be pre-
ceded by a write operation to the WE register in I/O RAM. The value written to the WE register is un-
important.
Time adjustments are written to the RTCA_ADJ, PREG and QREG registers. Updates to PREG and QREG
must occur after the one second interrupt, and must be finished before reaching the next one-second
boundary. The new values are loaded into the counters at the next one-second boundary.
PREG and QREG are separate registers in the device hardware, but the bits are 16-bit contiguous so the
MPU firmware can treat them as a single register. A single binary number can be calculated and then
loaded into them at the same time.
The 71M6533 and 71M6534 have two rate adjustment mechanisms. The first is an analog rate adjust-
ment, using RTCA_ADJ[6:0], which trims the crystal load capacitance. Setting RTCA_ADJ[6:0] to 00 mi-
nimizes the load capacitance, maximizing the oscillator frequency. Setting RTCA_ADJ[6:0] to 0x3F max-
imizes the load capacitance, minimizing the oscillator frequency. The adjustable capacitance is ap-
proximately:
pF
ADJ
RTCA
C
ADJ
5
.
16
128
_
=
The adjustment range is approximately -12 ppm to +22 ppm. The precise amount of adjustment will de-
pend on the crystal properties. The adjustment may occur at any time, and the resulting clock frequency
can be measured over a one-second interval.
The second rate adjustment is a digital rate adjust using PREG and QREG, which can be used to adjust
the clock rate up to
± 988 ppm, with a resolution of 3.8 ppm. Updates must occur after a one second in-
相关PDF资料
PDF描述
71M6533-IGT/F SPECIALTY ANALOG CIRCUIT, PQFP100
71M6542F-IGT/F SPECIALTY ANALOG CIRCUIT, PQFP100
71M6542G-IGTR/F SPECIALTY ANALOG CIRCUIT, PQFP100
71M6541G-IGTR/F SPECIALTY ANALOG CIRCUIT, PQFP64
71M6541F-IGTR/F SPECIALTY ANALOG CIRCUIT, PQFP64
相关代理商/技术参数
参数描述
71M6533H-IGTR/F 功能描述:计量片上系统 - SoC Precision Energy Meter IC RoHS:否 制造商:Maxim Integrated 核心:80515 MPU 处理器系列:71M6511 类型:Metering SoC 最大时钟频率:70 Hz 程序存储器大小:64 KB 数据 RAM 大小:7 KB 接口类型:UART 可编程输入/输出端数量:12 片上 ADC: 安装风格:SMD/SMT 封装 / 箱体:LQFP-64 封装:Reel
71M6533H-IGTR/F1 功能描述:计量片上系统 - SoC RoHS:否 制造商:Maxim Integrated 核心:80515 MPU 处理器系列:71M6511 类型:Metering SoC 最大时钟频率:70 Hz 程序存储器大小:64 KB 数据 RAM 大小:7 KB 接口类型:UART 可编程输入/输出端数量:12 片上 ADC: 安装风格:SMD/SMT 封装 / 箱体:LQFP-64 封装:Reel
71M6533H-IGTR/F2 功能描述:计量片上系统 - SoC Precision Energy Meter IC RoHS:否 制造商:Maxim Integrated 核心:80515 MPU 处理器系列:71M6511 类型:Metering SoC 最大时钟频率:70 Hz 程序存储器大小:64 KB 数据 RAM 大小:7 KB 接口类型:UART 可编程输入/输出端数量:12 片上 ADC: 安装风格:SMD/SMT 封装 / 箱体:LQFP-64 封装:Reel
71M6533-IGT/F 功能描述:计量片上系统 - SoC Precision Energy Meter IC RoHS:否 制造商:Maxim Integrated 核心:80515 MPU 处理器系列:71M6511 类型:Metering SoC 最大时钟频率:70 Hz 程序存储器大小:64 KB 数据 RAM 大小:7 KB 接口类型:UART 可编程输入/输出端数量:12 片上 ADC: 安装风格:SMD/SMT 封装 / 箱体:LQFP-64 封装:Reel
71M6533-IGT/F1 功能描述:计量片上系统 - SoC RoHS:否 制造商:Maxim Integrated 核心:80515 MPU 处理器系列:71M6511 类型:Metering SoC 最大时钟频率:70 Hz 程序存储器大小:64 KB 数据 RAM 大小:7 KB 接口类型:UART 可编程输入/输出端数量:12 片上 ADC: 安装风格:SMD/SMT 封装 / 箱体:LQFP-64 封装:Reel